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In the present study, a novel PbS:Ni (10 at. %) nanostructure was synthesised via a simple solid state reaction 

method at 400 °C and constant pressure. X-ray diffraction analysis confirms the formation of a face-centred 

cubic crystalline structure. Preferential growth is observed along the (311) plane direction. The calculated 

crystallite size of PbS:Ni (10 at. %) from XRD analysis was found to be equal to 65 nm. Scanning electron 

microscopy revealed the formation of nanostructured PbS:Ni (10 at. %) materials. Its band gap of ~ 2.14 eV 

was determined by photoluminescence spectroscopy. Raman spectroscopy was used to confirm the structure 

of the material. Electrical properties were studied by I-V characteristic at ± 5 V and a temperature range 

from 100 K to 300 K. The lnV-lnI plot showed a non-linear behaviour of PbS:Ni (10 at. %). Impedance 

spectroscopy is applied at temperatures from 100 K to 300 K in a frequency range from 20 Hz to 2 MHz to 

observe the dielectric response of PbS:Ni (10 at. %). As obtained, ε′ ~ 26 and conductivity in the order of 

10–4 S · cm–1 were obtained at all temperatures above 104 Hz. The results obtained from photoluminescence 

spectroscopy, I-V characteristics and impedance spectroscopy confirm that PbS:Ni (10 at. %) can be 

considered as a suitable material for optoelectronic applications. 
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dielectric 
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1. Introduction 

Lead sulphide (PbS) is an important member of the 

metal sulphide family. PbS has a cubic crystal structure 

and, as an A4B6 semiconductor material, has a narrow 

direct bandgap of 0.41 eV [1]. PbS is therefore used as an 

infrared sensor [2]. In addition, it contains an intrinsically 

large excitation Bohr radius, i.e. 18 nm [3], and is nowadays 

used in a wide range of applications such as inductive 

photo resistors, optoelectronic devices, infrared detectors, 

solar cells [4], photography [5], solar radiation absorption 

[6], optical switching devices, diode lasers, temperature 

sensors, LEDs, solar control, humidity and decorative 

coatings [7–9]. To achieve the appropriate physical 

properties of PbS, which are critical for the above 

applications, PbS is often doped with metals. The 

concentration and type of dopant are responsible for 

changing the efficiencies and physical properties of PbS. 

Various doping techniques, i.e., chemical bath deposition 

[10–14], spray pyrolysis [15], successive ionic layer 

adsorption and reaction, electrodeposition [16, 17], 

microwave heating [18, 19], vacuum evaporation [20], 

microwave irradiation methods, hydrothermal synthesis, 

co-precipitation method, sonochemical routes, solid-state 

reaction route and self-propagating high temperature 

method [21, 22] are used for PbS doping. 

In general, after metal doping of PbS, the band gap 

increases while the particle size decreases. This makes PbS 
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suitable for optoelectronic applications such as LEDs, 

photography, IR detectors and solar cells [23, 24]. Among 

the variety of techniques, the simple solid-state reaction is 

often used for metal doping of PbS due to its potential for 

industrial scalability. It is essential to acknowledge that its 

perceived advantage in cost-effectiveness may not always 

hold true, primarily due to the extended synthesis times 

involved. However, the primary rationale behind the 

widespread use of solid-state synthesis lies in its capacity 

for industrial scaling. This method facilitates the 

production of PbS derivatives in bulk quantities, meeting 

the demands of large-scale applications across industries. 

Therefore, while other synthesis methods may offer 

distinct advantages based on different criteria, the solid-

state reaction method remains a cornerstone in the 

fabrication of PbS-based materials, particularly due to its 

potential for efficient and scalable production [54, 55]. 

Shkir et al. [56–60] have made significant progress in 

the field of optoelectronic materials by synthesizing and 

characterizing a diverse array of PbS-based 

nanostructures tailored for various applications. In their 

pioneering work, they crafted Bi@PbS nanosheets [56], 

elucidating the unique structural and morphological 

attributes of these hybrid nanostructures. Additionally, 

their exploration into Ag-doped PbS nanoparticles [57] 

shed light on the intricate interplay between dopant 

concentration and material properties, offering valuable 

insights for optimizing optoelectronic device 

performance. 

Moreover, Shkir et al. explored the fabrication of PbS 

microflowers [58], shedding light on the impact of 

morphology on light-matter interactions and device 

functionality. Their investigation into Pt-doped PbS 

nanopowders [59] further expanded the horizon of 

possibilities, demonstrating the tunability of optical and 

electrical characteristics through controlled doping 

strategies. Furthermore, their synthesis of PbS nanosheets 

[60] provided comprehensive insights into the structural, 

morphological, and optoelectronic properties of these 

nanostructures, paving the way for advancements in 

device design and fabrication. 

We have already worked on PbS nanostructure where 

we doped 1 at. % and 3 at. % Ni in PbS at a sintering 

temperature of 400 °C and studied their dielectric 

properties in the temperature range of 198 K to 358 K 

[25]. We continue to work on PbS nanostructure and in 

this work a solid-state reaction route was used to prepare 

a Ni-heavy PbS derivative at a sintering temperature of 

400 °C. After the successful synthesis then we analysed 

and studied the effect of 10 at. % Ni doping in PbS by 

using several characterisation techniques including 

scanning electron microscopy (SEM), X-ray diffraction 

(XRD), photoluminescence (PL), Raman spectroscopy, I-V 

characteristics and electrochemical impedance 

spectroscopy (EIS) were carried out. 

2. Experimental 

2.1. Materials and synthesis method 

A solid-state reaction route was used for the synthesis 

and doping of Ni in PbS. The basic precursors were 

purchased from Sigma Aldrich and used without further 

purification. The stoichiometric amounts of the 

corresponding precursors of nickel (Ni), lead (Pb) and 

sulphur (S), i.e, Lead acetate trihydrate 

[Pb(CH3COO)2 · 3H2O; 99 %] for lead (Pb), thiourea 

[SC(NH2)2; ≥ 99.0 %] for sulphur (S) and nickel acetate 

tetrahydrate [Ni(CH3COO)2 · 4H2O; 99.9 %] for nickel 

(Ni) were taken, simply mixed and these precursors were 

ground in a mortar and pestle for 1 hour for the fine 

mixture. After grinding, the mixed powder was placed in 

an air furnace at 400 °C for 5 hours to anneal the ground 

sample and evaporate the excess precursors. After 

annealing, the samples were ground again for 10 minutes 

to obtain the fine powder. For further characterisation, 

the final product was obtained in the form of black 

powder. The chemical reaction that takes place for the 

formation of Ni-doped PbS during the solid-state reaction 

route. H2S reacts with Pb2+ ions to form PbS which reacts 

with Ni2+ ions to form PbS: Ni where Ni2+ ions substituted 

into Pb2+ ions in host PbS. 

The imaginable chemical reactions during PbS 

formation are explained as follows. First, the 

decomposition of thiourea occurs at temperature 150 °C 

[21] as given in Equation (1–4). 

𝑆𝐶(𝑁𝐻2)2
~150°𝐶
→     𝑁𝐻2𝐶𝑁 + 𝐻2𝑆, (1) 

Then H2S reacts with lead decomposed from lead 

acetate to form black-colored PbS as shown 

𝑃𝑏𝑆2+ +𝐻2𝑆 → 𝑃𝑏𝑆 + 2𝐻
+, (2) 

A similar procedure was adopted to prepare the 

doped PbS with Ni in 10 % atomic weight ratio. The 

general form of the doped sample is written in the 

following form. 

𝑃𝑏𝑆 + 𝑁𝑖 = 𝑃𝑏1−𝑥𝑁𝑖𝑥𝑆, (3) 

In our case as the Ni is doped in 10 % so here x = 0.1. 

Then possible chemical form of material is written by the 

following formula. 

𝑃𝑏𝑆 + 𝑁𝑖 = 𝑃𝑏0.9𝑁𝑖0.1𝑆. (4) 
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2.2. Characterization 

Several characterization techniques were carried out 

on the finally obtained nano powders of PbS:Ni (10 at. %). 

For structural studies such as crystallite size (𝐷), texture 

co-efficient (𝑇𝐶), d-spacing and lattice parameters of 

PbS:Ni (10 at. %), XRD (PANalytical X'Pert Pro) using 

CuKα radiation at 1.54 Å wavelength is used. A scanning 

electron microscope (JSM5910, JEOL, Japan) is used to 

study the surface morphology of PbS:Ni (10 at. %). 

Raman spectroscopy (Micro-Raman from Bruker and 

LabRam from Dongwoo Optron) is used to study the 

structure. The band gap of PbS:Ni (10 at. %) is calculated 

by photoluminescence (PL) spectroscopy (Dongwoo 

Optron's LabRam) using a 325 nm helium-cadmium laser. 

The I-V characteristic is used to study the electrical 

properties and impedance spectroscopy is used to study 

the dielectric response of PbS:Ni (10 at. %). The electrical 

equivalent circuit (EEC); (R1, CPE1) has been used to fit the 

impedance curves using the MINUIT library. 

3. Results and discussion 

The X-ray diffraction pattern in Figure 1a displays 

both pure PbS and PbS:Ni (10 at. %). In PbS:Ni (10 at. %), 

diffraction peaks were observed at 2𝜃 positions of 25.94 °, 

30.04 °, 43.02 °, 50.94 °, 53.36 °, 62.48 °, 68.82 °, 

70.92 °, and 78.91 °, corresponding to the lattice planes 

(111), (200), (220), (311), (222), (400), (331), (420), and 

(422), respectively. Similarly, for pure PbS, diffraction 

peaks were detected at 2𝜃 positions of 26.07 °, 30.17 °, 

43.15 °, 51.05 °, 53.50 °, 62.62 °, 68.98 °, 70.92 °, and 

78.91 °, corresponding to the same lattice planes. 

However, the lattice parameter for pure PbS and 

PbS:Ni (10 at. %) nanostructures at 2𝜃 positions of 30.17 ° 

and 30.04 ° is 5.918 Å and 5.948 Å, respectively. This is in 

agreement with previous reports [26–30]. This XRD 

pattern of PbS:Ni (10 at. %) agrees well with a standard 

JCPDS card reference code of 00–005–0592, implying the 

 

Figure 1 The XRD pattern of PbS:Ni (10 at. %) 

nanostructures (a). along with its magnified spectra (b). 

formation of a face-centered cubic crystal structure. No 

impurity peaks of Ni are observed in the XRD pattern. 

This is due to the substitution of Ni2+ ions by Pb2+ ions at 

the regular site in the host PbS. Figure 1b shows the 

enlarged spectra of pure PbS and PbS:Ni (10 at. %). A 

clear diffraction shift to a lower 2𝜃 diffraction angle was 

observed in the case of Ni-doping. This is due to internal 

stresses associated with the doping of Ni in PbS. The 

preferential growth is along the (311) plane direction, 

calculated using the texture coefficient formula given in 

Eq. (5): 

𝑇𝐶(ℎ𝑘𝑙) =

𝐼(ℎ𝑘𝑙)
𝐼𝑟(ℎ𝑘𝑙)
⁄

1

𝑛
∑ (

𝐼ℎ𝑘𝑙
𝐼𝑟(ℎ𝑘𝑙)⁄ )𝑛

, (5) 

where 𝑇𝐶(ℎ𝑘𝑙) is the texture coefficient, 𝐼(ℎ𝑘𝑙) is the 

intensities obtained from the XRD pattern, 𝐼𝑟(ℎ𝑘𝑙) is the 

intensities of the reference JCPDS card, and 𝑛 is the 

number of diffractions. 

The crystallite size and full-width half maximum 

(FWHM) values were calculated using the Scherrer 

equation (Eq. 6) and the average crystallite of ~ 65 nm was 

obtained. 

𝐷 =
𝐾𝜆

𝛽𝐶𝑜𝑠𝜃
, (6) 

where 𝐷 is crystallite size, 𝐾 is constant, known as 

crystalline shape, 𝐾 = 0.94 [30]. 𝛽 is peak width, 

𝜆 = 1.540562 Å wavelength of X-ray and 𝜃 is Bragg’s 

diffraction angle. 

Lattice constant (a) and d-spacing (𝑑) were calculated 

using Eq. (7) (Bragg’s law) and Equation (8) and the 

average lattice constant is 5.9429 Å which is in accordance 

with previous reports [29, 32]. 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆, (7) 

𝑑 =
𝑎

√ℎ2+𝑘2+𝑙2
, (8) 

where 𝑑 is the interplanar spacing, 𝜃 is the Braggs angle, 𝜆 

is the wavelength of the x-ray source, hkl are miller 

indices, and 𝑎 is the lattice constant. 

Crystallite size, d-spacing, and lattice constant values 

are summarised in Table 1. 

The scanning electron microscopy (SEM) was used to 

study the surface morphology of PbS:Ni (10 at. %). 

Figure 2a shows the SEM image of PbS:Ni (10 at. %), which 

clearly displays a porous network of agglomerated 

nanostructures in the form of grains with varying shapes 

and sizes that are loosely packed together. The formation 

of such agglomerates can be attributed to various factors, 
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Table 1 – Lattice constants, d-spacing and crystallite sizes of 

PbS:Ni (10 at. %). 

Peak no. 2𝜽 (hkl) 𝒅 (Å) 𝒂 (Å) 𝑫hkl (nm) 

1 25.94 ° (111) 3.4346 5.9489 57 

2 30.04 ° (200) 2.9744 5.9488 58 

3 43.02 ° (220) 2.1026 5.9471 72 

4 50.94 ° (311) 1.7912 5.9407 76 

5 53.36 ° (222) 1.7155 5.9427 62 

6 62.48 ° (400) 1.4852 5.9408 81 

7 68.82 ° (331) 1.3630 5.9412 56 

8 70.92 ° (420) 1.3277 5.9376 68 

9 78.90 ° (422) 1.2122 5.9385 60 

 

 

Figure 2 SEM image of PbS:Ni (10 at. %) nanostructures (a). EDS 

graph of PbS:Ni (10 at. %) nanostructures (b). 

including the synthesis conditions, precursor 

characteristics, and aggregation kinetics. In our synthesis 

method, the solid-state reaction route at a sintering 

temperature of 400 °C may have facilitated the formation 

of these agglomerates due to the coalescence of 

nanoparticles during the annealing process. Additionally, 

factors such as surface energy minimization and particle-

particle interactions can promote the aggregation of 

nanoparticles into larger structures. The detailed 

composition is explained in experimental section. The 

doping was performed in PbS with 10 % of Ni therefore 

the chemical composition of prepared sample is 

Pb0.9Ni0.1S. 

Additionally, Figure 2b presents the EDS graph of 

PbS:Ni (10 at. %), indicating the presence of Ni in PbS. 

The bandgap energy of PbS:Ni (10 at. %) was 

determined using photoluminescence (PL) spectroscopy. 

The PL spectrum of PbS:Ni (10 at. %) exhibits an emission 

peak at 𝜆 = 578 nm, as shown in Figure 3. The calculated 

bandgap value of PbS:Ni (10 at. %) is 2.14 eV. Comparison 

with the previous results [25] shows that the band gap of 

PbS:Ni (10 at. %) sintered at 400 °C has increased slightly. 

Figure 4 displays the Raman spectrum of 

PbS:Ni (10 at. %) nanostructures at room temperature. 

Prominent bands are observed at approximately 144, 261, 

429, and 976 cm–1. The band at 144 cm–1 is due to the 

combination   of   transverse   and   longitudinal   acoustic 

 

Figure 3 Shows the PL spectrum of PbS:Ni (10 at. %) 

nanostructures at room temperature. 

 

Figure 4 Raman spectrum of PbS:Ni (10 at. %) nanoparticles at 

room temperature. 

phonon modes in the PbS:Ni. This band is assigned to the 

scattering of two constant wave number phonons in the 

Brillouin zone in the PbS:Ni crystal structure. Ni crystal 

structure. The band at 261 cm–1 corresponds to PbO. No 

diffraction of PbO was observed in the XRD analysis 

(Figure 1). Therefore, the formation of PbO is attributed 

to photo-degradation, as indicated by Raman 

spectroscopy. The band at 429 cm–1 corresponds to the 

first overtone of longitudinal optical (LO) phonon in the 

center of the Brillouin zone, while the band at 976 cm–1 is 

attributed to oxides-sulfates [33, 34]. 

The I-V characteristics describe the electric current 

response of the prepared material to an applied voltage or 

field. I-V measurements were performed on a pressed 

pellet of PbS:Ni (10 at. %) at temperatures ranging from 

100 K to 300 K, with an applied voltage varying from 

–5 V to +5 V. The I-V curves are influenced by several 

factors, including the material, applied electric field, 

temperature, doping type, and doping concentration. The 

direction of the current along the x and y axes determines 

whether the material is under reverse or forward bias. To 

observe the conduction mechanism, we plot the ln-ln 

values of current and voltage, following the power 



Electrochem. Mater. Technol. 3 (2024) 20243033                                                                                                                                                                                                                                    ARTICLE 

 

 

 

5 

 

equation 𝐼 ∝ 𝑉𝑚. The type of conduction mechanism can 

be determined by the slope 𝑚 of the curve in the ln-ln 

graph. If the slope is around 1, then it is ohmic, indicating 

metallic behaviour of the prepared material. If the slope is 

between 1 and 2, the conduction mechanism is either Poole 

Frankel or Schottky. If the slope is around 2, the 

conduction mechanism would be space charge limited 

current (SCLC) [35]. Figure 5a displays the non-linear 

(non-ohmic) I-V characteristic curve, and Figure 5b shows 

the lnV-lnI plot of PbS:Ni (10 at. %). The current changes 

with temperature, confirming the semiconductor 

behaviour of PbS:Ni (10 at. %). The slope was calculated 

using the power equation, resulting in a value of 1.401. 

This indicates that PbS:Ni (10 at. %) displays Schottky 

behaviour. 

Impedance spectroscopy was used to evaluate the 

dielectric response of PbS:Ni (10 at. %) at temperatures 

ranging from 100 K to 300 K (in 20 K increments) in a 

pressed pellet. The thickness and dimeter of the pellet is 

1.69 mm and 13.15 mm respectively and silver electrode 

was paste on the pellet during the impedance 

spectroscopy measurement. The AC voltage was applied 

at an amplitude of 1 V and a frequency range of 20 Hz to 

2 MHz was used. 

Figure 6 displays the relationship between frequency 

and conductivity variation of PbS:Ni (10 at. %). It is 

evident that the conductivity is temperature-dependent. 

The conductivity values at 100 K and 300 K and 2 MHz 

were 2.52 · 10–4 S · m–1 and 3.01 · 10–4 S · m–1, respectively. 

The frequency versus conductivity graph comprises two 

sections. The first section is independent of frequency but 

dependent on temperature, i.e., the conductivity remains 

constant with frequency (i.e., DC conductivity). The 

section of the frequency vs conductivity graph that is 

dependent on frequency and temperature is known as AC 

conductivity. The frequency at which the conductivity 

experiences a sharp increase is referred to as the hopping 

frequency. The conductivity is composed of two parts: 

real and imaginary. The real part of the conductivity was 

calculated using Eq. 9 [36]. 

 𝜎𝑎𝑐
′ = (

𝑍′

𝑍′2+𝑍′′2
)
𝑑

𝐴
, (9) 

where 𝑍′ and 𝑍′′ are the real and imaginary parts of the 

impedance, 𝐴 and 𝑑 are the area and thickness of the 

pellet, respectively. The real part of conductivity consists 

of two parts as discussed above, i.e., DC and AC 

conductivity [37]. 

𝜎𝑎𝑐
՜ = 𝜎1(𝑇) + 𝜎2(𝜔, 𝑇), (10) 

where 𝜎1(𝑇) and 𝜎2(𝜔, 𝑇) are dc and ac conductivity 

respectively. 

 𝜎1(𝑇) = 𝜎0exp (−
𝐸𝑎

𝐾𝐵𝑇
), (11) 

and, 

𝜎2(𝜔, 𝑇) = 𝐵(𝑇)𝜔
𝑠(𝑇), (12) 

where 𝐸𝑎 is activation energy, 𝐾𝐵 is Boltzmann constant,  
𝜎0 pre-exponential factor, 𝑠 dimensionless constant and 

𝐵(𝑇) is temperature-dependent parameter having unit of 

conductivity. 

 

Figure 5 Temperature-dependent I-V curve (a) and temperature-dependent lnV-lnI curve (b) of PbS:Ni (10 at. %). 
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Figure 6 Frequency vs conductivity variation of 

PbS:Ni (10 at. %). 

 

Figure 7 Frequency vs real part of permittivity (𝜀′) of 

PbS:Ni (10 at. %). 

Figure 7 shows the frequency vs permittivity (real 

part) of PbS:Ni (10 at. %) at different temperatures and 

frequencies. The permittivity values are observed to be 

high at lower frequencies and decrease with an increase in 

frequency. At high frequencies, the permittivity values 

become independent of frequency. The reduction in 

permittivity values at higher frequencies is due to 

polarization, which cannot fully align itself during a 

frequency cycle in the available time. 

At lower frequencies, the higher permittivity is a 

result of the integrated effect of atomic, interfacial, ionic, 

and electronic polarizations [37–39]. When the measuring 

frequency is overcome by the relaxation frequency, every 

type of polarization affects the permittivity. Therefore, 

the interfacial polarization characteristic to grain 

boundaries at lower frequencies causes larger values of 

permittivity. Maxwell – Wagner's theory explains the 

variation in permittivity with frequency, which is in good 

agreement with Koop's phenomenological theory. 

According to Maxwell – Wagner theory, the interfacial 

polarization characteristic of the grain boundary is 

prominent at lower frequencies because the grain 

boundary behaves like a barrier to the flow of charge 

carriers [40, 41]. 

The reason for high permittivity values at lower 

frequencies can be explained as follows: PbS:Ni 

nanoparticles contain a large number of disordered ions, 

including positive ions of lead and nickel and negative ions 

of sulphur vacancies. These ions behave like shallow 

acceptors at grain boundaries [42]. Ni nanoparticles 

consist of a large number of disordered ions, including 

positive ions of lead and nickel and negative ions of 

sulphur vacancies. When an external electric field is 

applied, the dipole moments within the material rotate in 

response. These rotated dipole moments, which are due to 

externally applied fields at grain boundaries, contribute 

to the permittivity of PbS:Ni. Additionally, the grain 

boundaries of dense nanomaterials at high pressure 

contain numerous defects, such as vacancies, dangling 

bonds, and porosities, which cause changes in the positive 

and negative space charge distributions [42]. When an 

external electric field is applied, positive and negative ions 

move towards the positive and negative poles of the field, 

respectively. At the same time, a large number of dipole 

moments are inevitably created after being trapped by the 

defects [43]. The high permittivity values for 

PbS:Ni (10 at. %) nanostructures are caused by the space 

charge polarization at grain boundaries. For temperatures 

above 104 Hz, we obtained 𝜀′ of approximately 26, which 

is higher than that of the bulb PbS, which is about 17. 

Figure 8 displays the frequency versus the real and 

imaginary parts of PbS:Ni (10 at. %). In both figures, 𝑍′ 

and 𝑍′′ are temperature-dependent, meaning that their 

values change with temperature. A phenomenon known 

as negative temperature coefficient of resistance was 

observed, resulting in a decrease in the values of 𝑍′ and 

𝑍′′ with increasing temperature, indicating an increase in 

conduction. Furthermore, the values of 𝑍′ and 𝑍′′ 

decrease with increasing frequency. At higher 

frequencies, these values tend to merge for all 

temperatures, indicating the possible release of space 

charges [44]. At lower frequencies, they interact with 

interfaces and grain boundaries, whereas at higher 

frequencies, they interact with the bulk of the material. 

The bulk is more conductive than interfaces and grain 

boundaries. The frequency vs 𝑍′′ spectrum provides 

information about the system relaxation time.  

Figure 9a displays the Nyquist plot of 

PbS:Ni (10 at. %), depicting 𝑍′ vs 𝑍′′ where 𝑍′ and 𝑍′′ 

represent the real and imaginary parts of impedance, 
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respectively. The plot illustrates an increasing frequency 

from right to left and is used to identify the most resistive 

parts, such as grain boundaries and sub-grain boundaries, 

in the structure [45]. The Nyquist plot comprises one or 

more semi-circular arcs that provide information about 

the relaxation processes. The arc at lower frequencies 

suggests a grain boundary effect, while the arc at higher 

frequencies is consistent with a bulk effect. The Nyquist 

plot indicates a semi-circular arc at all temperatures, 

which is centred in the high frequency region [46]. 

Additionally, the diameter of the semi-circular arc is 

larger at lower temperatures i.e. at 100 K, indicating 

higher impedance that decreases with increasing 

temperatures. At high temperatures, the impedance of 

semiconductor materials decreases due to the thermal 

activation of charge carriers. 

Figure 9b displays the activation energy of Ni-doped 

PbS (10 at. %), which was found to be 0.10 eV. It has been 

reported in the literature that the activation energy of 

pure PbS is approximately 0.22 eV [45]. The decrease in 

activation energy of Ni-doped PbS may be attributed to 

the creation of interstitial levels by the doped material and 

higher ionization energies caused by oxygen vacancies. 

To enhance comprehension, we compared the band 

gap and dielectric value of PbS:Ni (10 at. %) with the 

literature values, as presented in Table 2. 

 

Figure 8 Frequency vs real part 𝑍′ (a) and imaginary part 𝑍′′ (b) 

of impedance spectra. 

Table 2 – Comparison of Band gap and Dielectric constant values of PbS:Ni (10 at. %) with literature. 

Materials Synthesis route Band gap Dielectric constant Ref. 

Zn-doped PbS film Chemical bath deposition technique 1.39 eV – [47] 

Nanocrystalline PbS thin films Thin film coating 2.40 eV – [48] 

PbS quantum dots ab initio method 1.49 eV – [49] 

PbS nanoparticles Inflight sintering 2.00 eV – [50] 

PbS–PVA nanocomposite thin films Chemical bath deposition 2.50 eV 155 [51] 

Ce doped PbS NPs Low-cost chemical route 3.04 eV 24.5 [52] 

Y-doped PbS NPs Coprecipitation chemical synthesis 1.37 eV 28 [53] 

Ni-doped PbS NPs Coprecipitation 1.89 eV – [30] 

Ni-doped PbS nanostructure Solid state route 2.14 eV 26 This study 

 

Figure 9 Nyquist plot (𝑍′ vs 𝑍′′), inset is the equivalent circuit (a) and the activation energy of PbS:Ni (10 at. %) (b). 
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4. Conclusions 

PbS:Ni (10 at. %) nanostructures were synthesized 

using a solid-state reaction method at atmospheric 

pressure and 300 °C. X-ray diffraction and scanning 

electron microscopy confirmed the face-centered cubic 

crystalline phase nanostructure with a crystallite size of 

approximately 65 nm. The preferential growth of 

PbS:Ni (10 at. %) was observed along the (311) plane 

direction. The photoluminescence spectroscopy 

calculation yielded an optical band gap of 2.14 eV. 

The I-V characteristic indicates non-ohmic behavior of 

PbS:Ni (10 at. %). Impedance spectroscopy was conducted 

on PbS:Ni (10 at. %) nanostructures at a temperature 

range of 100–300 K and frequencies ranging from 20 Hz 

to 2 MHz. The results showed good permittivity and 

conductivity values compared to pure PbS. Therefore, it 

can be concluded that PbS:Ni (10 at. %) synthesized at 

400 °C is a suitable candidate for optoelectronic 

applications. 
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