Cover Image

Structure and dynamics of molten calcium chloride: ab initio simulations

Dmitry O. Zakiryanov

Abstract


Structure and transport properties of CaCl2-based melts attract attention due to prospective applications in the field of energy storage and transport, including green technologies. Most effort was aimed at mixed binary and ternary compositions, while pure CaCl2 melt was investigated in less detail. In this paper, molten CaCl2 was simulated using the ab initio molecular dynamics approach. Due to the relatively high duration of the simulation run, both static and dynamic properties were obtained. It was found that preferential Ca coordination cases are [CaCl7] and [CaCl6]. Dynamic properties including vibrational density of states and cation-anion lifetimes show that the structure of the melt does not exhibit stable units. Self-diffusion coefficients calculated from mean squared displacements are in a good agreement with available experimental data.

Keywords


molten salt; local structure; calcium chloride; vibrational spectra

Full Text:

PDF

References


Li Y, Xu X, Wang X, Li P et al., Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP, Solar Energy, 152 (2017) 57–79. https://doi.org/10.1016/j.solener.2017.03.019

Tian H, Wang W, Ding J, Wei X, Thermal performance and economic evaluation of NaCl–CaCl2 eutectic salt for high-temperature thermal energy storage, Energy, 227 (2021) 120412. https://doi.org/10.1016/j.energy.2021.120412

Du L, Ding J, Tian H, Wang W, et al., Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process, Applied Energy, 204 (2017) 1225–1230. https://doi.org/10.1016/j.apenergy.2017.03.096

Jacob R, Sergeev D, Yazhenskikh E, Müller M, Evaluation of the calcium chloride-calcium fluoride system for high temperature thermal energy storage, Journal of Energy Storage, 72 (2023) 108521. https://doi.org/10.1016/j.est.2023.108521

Jones RO, Density functional theory: Its origins, rise to prominence, and future, Reviews of Modern Physics, 87 (2015) 897–923. https://doi.org/10.1103/revmodphys.87.897

Geerlings P, De Proft F, Langenaeker W, Conceptual Density Functional Theory, Chemical Reviews, 103 (2003) 1793–1874. https://doi.org/10.1021/cr990029p

Deringer VL, Caro MA, Csányi G, Machine Learning Interatomic Potentials as emerging Tools for Materials Science, Advanced Materials, 31 (2019) 1902765. https://doi.org/10.1002/adma.201902765

Behler J, Perspective: Machine learning potentials for atomistic simulations, The Journal of Chemical Physics, 145 (2016) 170901. https://doi.org/10.1063/1.4966192

Xie Y, Bu M, Zhang Y, Lu G, Effect of composition and temperature on microstructure and thermophysical properties of LiCl-CaCl2 molten salt based on machine learning potentials, Journal of Molecular Liquids, 383 (2023) 122112. https://doi.org/10.1016/j.molliq.2023.122112

Rong Z, Pan G, Lu J, Liu S, et al., Ab-initio molecular dynamics study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and storage, Renewable Energy, 163 (2020) 579–588. https://doi.org/10.1016/j.renene.2020.08.152

Gegentana N, Cui L, Zhou L, Du X, Deep Potential Molecular Dynamics Systematic Study of Microstructure and Thermophysical Properties of NaCl-CaCl2 Molten Salt System across Phase Transition Temperature, Journal of Thermal Science, 33 (2024) 2245–2258. https://doi.org/10.1007/s11630-024-2054-5

Gegentana N, Cui L, Zhou L, Du X, A deep potential molecular dynamics study on the ionic structure and transport properties of NaCl-CaCl2 molten salt, Ionics, 30 (2023) 285–295. https://doi.org/10.1007/s11581-023-05265-8

Bu M, Liang W, Lu G, Yu J, Local structure elucidation and properties prediction on KCl–CaCl2 molten salt: A deep potential molecular dynamics study, Solar Energy Materials and Solar Cells 232 (2021) 111346. https://doi.org/10.1016/j.solmat.2021.111346

Xie Y, Bu M, Lu G, Local structure and thermophysical property prediction for CaCl2-KCl molten salt with machine learning potentials, Materials Today Communications, 41 (2024) 110243. https://doi.org/10.1016/j.mtcomm.2024.110243

Luo X, Ling C, Xu T, Liu W et al., Thermophysical property and micro-structure of the molten NaCl-KCl-CaCl2 salt at high temperature by FPMD simulation, Solar Energy Materials and Solar Cells, 288 (2025) 113630. https://doi.org/10.1016/j.solmat.2025.113630

Xie Y, Bu M, Lu G, Insights into CaCl2-NaCl-KCl molten salt: A machine learning approach to unraveling structure and properties, Journal of Energy Storage, 102 (2024) 114156. https://doi.org/10.1016/j.est.2024.114156

Bu M, Liang W, Lu G, Yu J, Static and dynamic ionic structure of molten CaCl2 via first-principles molecular dynamics simulations, Ionics, 27 (2020) 771–779. https://doi.org/10.1007/s11581-020-03852-7

Perdew JP, Burke K, Ernzerhof M, Generalized gradient approximation made simple, Physical Review Letters, 77 (1996) 3865–3868. https://doi.org/10.1103/physrevlett.77.3865

Umesaki N, Structural characterization of molten calcium chloride by molecular dynamics simulation, AIP Conference Proceedings, 256 (1992) 561–562. https://doi.org/10.1063/1.42392

Biggin S, Enderby JE, The structure of molten calcium chloride, Journal of Physics C Solid State Physics, 14 (1981) 3577–3583. https://doi.org/10.1088/0022-3719/14/25/006

Grimme S, Antony J, Ehrlich S, Krieg H, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, 132 (2010) 154104. https://doi.org/10.1063/1.3382344

Grimme S, Hansen A, Brandenburg JG, Bannwarth C, Dispersion-Corrected Mean-Field electronic structure Methods, Chemical Reviews, 116 (2016) 5105–5154. https://doi.org/10.1021/acs.chemrev.5b00533

Goerigk L, A comprehensive overview of the DFT-D3 London-Dispersion correction, in: Elsevier eBooks, 2017: pp. 195–219. https://doi.org/10.1016/b978-0-12-809835-6.00007-4

Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV et al., CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations, The Journal of Chemical Physics, 152 (2020) 194103. https://doi.org/10.1063/5.0007045

VandeVondele J, Hutter J, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, The Journal of Chemical Physics, 127 (2007) 114105. https://doi.org/10.1063/1.2770708

Goedecker S, Teter M, Hutter J, Separable dual-space Gaussian pseudopotentials, Physical Review. B, Condensed Matter, 54 (1996) 1703–1710. https://doi.org/10.1103/physrevb.54.1703

Koput J, Ab Initio Prediction of the Potential Energy Surface and Vibration-Rotation Energy Levels of CaCl2, Journal of Physical Chemistry A, 112 (2008) 2743–2746. https://doi.org/10.1021/jp711785p

Janz GJ, Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data, Journal of Physical and Chemical Reference Data, 17 (1988) 309.

Porter T, Vaka MM, Steenblik P, Della Corte D, Computational methods to simulate molten salt thermophysical properties, Communications Chemistry, 5 (2022) 69. https://doi.org/10.1038/s42004-022-00684-6

Zakiryanov D, The refined determination of the ion pair lifetimes in ionic liquids, Computational and Theoretical Chemistry, 1210 (2022) 113646. https://doi.org/10.1016/j.comptc.2022.113646

Thomas M, Brehm M, Fligg R, Vöhringer P, et al., Computing vibrational spectra from ab initio molecular dynamics, Physical Chemistry Chemical Physics, 15 (2013) 6608. https://doi.org/10.1039/c3cp44302g

Brehm M, Kirchner B, TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories, Journal of Chemical Information and Modeling, 51 (2011) 2007–2023. https://doi.org/10.1021/ci200217w

Yu M, Trinkle DR, Accurate and efficient algorithm for Bader charge integration, The Journal of Chemical Physics, 134 (2011) 064111. https://doi.org/10.1063/1.3553716

Bockris JO, Richards SR, Nanis L, Self-Diffusion and structure in molten group II chlorides, The Journal of Physical Chemistry, 69 (1965) 1627–1637. https://doi.org/10.1021/j100889a031

Ichikawa K, Shimoji M, Niwa K, Impurity diffusion of calcium ions in alkali chloride + calcium chloride mixed melts and Self‐Diffusion of calcium ions in molten calcium chloride, Berichte Der Bunsengesellschaft Für Physikalische Chemie, 69 (1965) 248–255. https://doi.org/10.1002/bbpc.19650690313




DOI: https://doi.org/10.15826/elmattech.2025.4.052

Copyright (c) 2025 Dmitry O. Zakiryanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.