Cover Image

Progress in infiltration technology applied to air electrodes with proton-conducting electrolyte backbones

Elena Yu. Pikalova

Abstract


Lowering the operating temperature of solid-state energy devices to 500–700 °C has driven an increased attention being paid to protonic ceramic cells (PCCs) due to several advantages they offer such as low activation energy for proton diffusion, fuel flexibility, higher power efficiency provided by the absence of fuel dilution at the anode, as well as enhanced potential for lower housing and stacking costs. However, a significant challenge for fuel/electrolysis cells based on proton-conducting electrolytes is the performance of air electrodes for efficient oxygen reduction and water splitting reactions. The infiltration of catalysts into porous backbone layers has been demonstrated to be a highly effective method for the fabrication of highly active and durable PCC electrodes. This Focus Review summarizes the achievements in the application of the infiltration technique to the formation of air electrodes with proton-conducting electrolyte/composite backbones modified with various catalysts as a promising simple and cost-effective way to eliminate electrode/electrolyte mismatch issues and provide significant performance enhancement.

Keywords


proton conducting fuel cells; air electrode; proton-conducting electrolytes; infiltration technique; electrolyte backbone; composite backbone; enhanced performance; durability

Full Text:

PDF

References


Kim D, Lee TK, Han S, Jung Y, et al., Advances and challenges in developing protonic ceramic cells, Mater. Today Energy, 36 (2023) 101365. https://doi.org/10.1016/j.mtener.2023.101365

Wang Y, Ling Y, Wang B, Zhai G, et al., A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production, Energy Environ. Sci., 16 (2023) 5721–5770. https://doi.org/10.1039/D3EE03121G

Zvonareva I, Fu X-Z, Medvedev D, Shao Z, Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes, Energy Environ. Sci., 15 (2022) 439–465. https://doi.org/10.1039/D1EE03109K

Wang Q, Ricote S, Chen M, Oxygen electrodes for protonic ceramic cells, Electrochimica Acta, 446 (2023) 142101. https://doi.org/10.1016/j.electacta.2023.142101

Zhang W, Zhang X, Song Y, Wang G, Recent progress on cathode materials for protonic ceramic fuel cells, Sustain, 3 (2024) 100028. https://doi.org/10.1016/j.nxsust.2024.100028

Oh S, Kim H, Jeong I, Kim D, et al., Recent progress in oxygen electrodes for protonic ceramic electrochemical cells, J. Korean Ceram. Soc., 61 (2024) 224–249. https://doi.org/10.1007/s43207-023-00360-y

Kang H, Park YJ, Baek SY, Kim J, et al., Recent breakthroughs in cathode of protonic ceramic fuel cells: Materials, functionalization, and future perspectives, InfoMat, (2025) e70025. https://doi.org/10.1002/inf2.70025

Kasyanova AV, Tarutina LR, Rudenko AO, Lyagaeva JG, Medvedev DA, Ba(Ce,Zr)O3-based electrodes for protonic ceramic electrochemical cells: towards highly compatible functionality and triple-conducting behaviour, Russ. Chem. Rev., 89 (2020) 667–692. https://doi.org/10.1070/RCR4928

Medvedev D, Trends in research and development of protonic ceramic electrolysis cells, Int. J. Hydrog. Energy, 44 (2019) 26711–26740. https://doi.org/10.1016/j.ijhydene.2019.08.130

Medvedev DA, Ricote S, Electrochemistry of proton-conducting ceramic materials and cells, J. Solid State Electrochem., 24 (2020) 1445–1446. https://doi.org/10.1007/s10008-020-04655-6

Inocêncio CVM, Holade Y, Morais C, Kokoh KB, Napporn TW, Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy, Electrochem. Sci. Adv., 3 (2023) e2100206. https://doi.org/10.1002/elsa.202100206

Tarutin AP, Filonova EA, Ricote S, Medvedev DA, Shao Z, Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide, Sustain. Energy Technol. Assess., 57 (2023) 103185. https://doi.org/10.1016/j.seta.2023.103185

Pei K, Zhou Y, Xu K, Zhang H, et al., Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells, Nat. Commun., 13 (2022) 2207. https://doi.org/10.1038/s41467-022-29866-5

Liu Z, Bai Y, Sun H, Guan D, et al., Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells, Nat. Commun., 15 (2024) 472. https://doi.org/10.1038/s41467-024-44767-5

Wang Z, Jiang G, Zhang Y, Wang Y, et al., An active and durable perovskite electrode with reversibly phase transition-induced exsolution for protonic ceramic cells, C Chem. Eng. J., 500 (2024) 157268. https://doi.org/10.1016/j.cej.2024.157268

Tarutina LR, Kasyanova AV, Starostin GN, Vdovin GK, Medvedev DA, Electrochemical activity of original and infiltrated Fe-doped Ba(Ce,Zr,Y)O3-based electrodes to be used for protonic ceramic fuel cells, Catalysts, 12 (2022) 1421. https://doi.org/10.3390/catal12111421

Yao P, Zhang J, Qiu Q, Zhao Y, et al., Enhancing oxygen reduction kinetics and proton transfer of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode through Pr2Ni0.5Co0.5O4−δ impregnation for protonic ceramic fuel cells, Adv. Energy Mater., 15 (2025) 2403335. https://doi.org/10.1002/aenm.202403335

Lu X, Yang Z, Zhang J, Zhao X, et al., A cobalt-free Pr6O11–BaCe0.2Fe0.8O3−δ composite cathode for protonic ceramic fuel cells with promising oxygen reduction activity and hydration ability, J. Power Sources, 599 (2024) 234233. https://doi.org/10.1016/j.jpowsour.2024.234233

Jing J, Lei Z, Zheng Z, Wang H, et al., Multifunctional nanocomposite active layers synergistically enhance the performance of reversible proton ceramic cell, Renew. Energy, 243 (2025) 122551. https://doi.org/10.1016/j.renene.2025.122551

Li G, He B, Ling Y, Xu J, Zhao L, Highly active YSB infiltrated LSCF cathode for proton conducting solid oxide fuel cells, Int. J. Hydrog. Energy, 40 (2015) 13576–13582. https://doi.org/10.1016/j.ijhydene.2015.07.164

Zhang Z, Wang J, Chen Y, Tan S, et al., In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs, J. Power Sources, 385 (2018) 76–83. https://doi.org/10.1016/j.jpowsour.2018.03.029

Tarutina LR, Kuznetsova PS, Skutina LS, Murashkina AA, Medvedev DA, Phase relationships and thermal behavior of one-pot synthesized dual-phase BaCe0.5Fe0.5O3–δ composites, Ceram. Int., 51 (2025) 3471–3481. https://doi.org/10.1016/j.ceramint.2024.11.324

Skutina LS, Yang G, Medvedev DA, Engineering the one-pot synthesized Ba(Ce,Fe)O3-based composites as triple-conducting electrodes for solid oxide electrochemical cell applications, Chem. Eng. J., 512 (2025) 162320. https://doi.org/10.1016/j.cej.2025.162320

Liu Z, Chen Y, Yang G, Yang M, et al., One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells, Appl. Catal. B Environ., 319 (2022) 121929. https://doi.org/10.1016/j.apcatb.2022.121929

Kang EH, Choi HR, Park JS, Kim KH, et al., Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3–δ thin-film electrolytes, J. Power Sources, 465 (2020) 228254. https://doi.org/10.1016/j.jpowsour.2020.228254

Lee S, Park S, Wee S, Baek HW, Shin D, One-dimensional structured La0.6Sr0.4Co0.2Fe0.8O3–δ–BaCe0.5Zr0.35Y0.15O3–δ composite cathode for protonic ceramic fuel cells, Solid State Ion., 320 (2018) 347–352. https://doi.org/10.1016/j.ssi.2018.03.010

Park HS, Jeong HJ, Kim K, Chang W, et al., High-performance proton ceramic fuel cells using a perovskite oxide cathode surface decorated with CoOx nanoparticles, Appl. Surf. Sci., 612 (2023) 155812. https://doi.org/10.1016/j.apsusc.2022.155812

Papac MC, Huang J, Zakutayev A, O’Hayre R, Combinatorial impedance spectroscopy with Bayesian analysis for triple ionic-electronic conducting perovskites, J. Mater. Chem. A, 11 (2023) 5267–5278. https://doi.org/10.1039/D2TA01736A

Watanabe M, Uchida H, Shibata M, Mochizuki N, Amikura K, High performance catalyzed‐reaction layer for medium temperature operating solid oxide fuel cells, J. Electrochem. Soc., 141 (1994) 342–346. https://doi.org/10.1149/1.2054728

Desta HG, Gebreslassie G, Zhang J, Lin B, Zheng Y, et al., Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering, Prog. Mater. Sci., 147 (2025) 101353. https://doi.org/10.1016/j.pmatsci.2024.101353

Dai M, Li F, Fang S, He D, et al., Advances in nanostructured electrodes for solid oxide cells by infiltration or exsolution, Materials, 18 (2025) 1802. https://doi.org/10.3390/ma18081802

Beresnev SM, Bobrenok OF, Kuzin BL, Bogdanovich NM, et al., Single fuel cell with supported LSM cathode, Russ. J. Electrochem., 48 (2012) 969–975. https://doi.org/10.1134/S1023193512100035

Pikalova EYu, Osinkin DA, Structural stability and features of electrical and electrochemical behavior under reducing conditions of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3–δ material for the symmetrical SOFCs, Electrochem. Mater. Technol., 3 (2024) 20243039. https://doi.org/10.15826/elmattech.2024.3.039

Osinkin DA, Beresnev SM, Bogdanovich NM, Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6–δ based cathode, J. Power Sources, 392 (2018) 41–47. https://doi.org/10.1016/j.jpowsour.2018.04.076

Osinkin DA, An approach to the analysis of the impedance spectra of solid oxide fuel cell using the DRT technique, Electrochimica Acta, 372 (2021) 137858. https://doi.org/10.1016/j.electacta.2021.137858

Osinkin DA, Precursor of Pr2NiO4+δ as a highly effective catalyst for the simultaneous promotion of oxygen reduction and hydrogen oxidation reactions in solid oxide electrochemical devices, Int. J. Hydrog. Energy, 46 (2021) 24546–24554. https://doi.org/10.1016/j.ijhydene.2021.05.022

Antonova EP, Khodimchuk AV, Tropin ES, Porotnikova NM, et al., Influence of modifying additives on electrochemical performance of La2NiO4+δ-based oxygen electrodes, Solid State Ion., 346 (2020) 115215. https://doi.org/10.1016/j.ssi.2019.115215

Yaroslavtsev IYu, Bronin DI, Vdovin GK, Isupova LA, Oxide cathodes for electrochemical devices made with the use of a nanostructured composition material, Russ. J. Electrochem., 48 (2012) 981–985. https://doi.org/10.1134/S1023193512100138

Meshcherskikh AN, Khaliullina ASh, Pikalova EYu, Dunyushkina LA, Ln2NiO4+δ-based oxygen electrodes for proton-conducting Sr0.98Zr0.95Yb0.05O3–δ electrolyte for application in IT-SOFCs, Electrochem. Mater. Technol., 4 (2025) 20254047. https://doi.org/10.15826/elmattech.2025.4.047

Antonova E, Tropin E, Composite LaNi0.6Fe0.4O3–δ–La0.9Sr0.1Sc0.9Co0.1O3–δ cathodes for proton conducting solid oxide fuel cells: Electrode kinetics study, Ceram. Int., 50 (2024) 40492–40499. https://doi.org/10.1016/j.ceramint.2024.04.025

Li X, Zhou L, Li Q, Kalu A, et al., Nanocomposite electrodes as a new opportunity to transform the performance of solid oxide cells, J. Mater. Chem. A, 11 (2023) 25803–25824. https://doi.org/10.1039/D3TA05430F

Jiang Z, Xia C, Chen F, Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique, Electrochimica Acta, 55 (2010) 3595–3605. https://doi.org/10.1016/j.electacta.2010.02.019

Vohs JM, Gorte RJ, High‐performance SOFC cathodes prepared by infiltration, Adv. Mater., 21 (2009) 943–956. https://doi.org/10.1002/adma.200802428

Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC, Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes, Fuel Cells, 8 (2008) 303–312. https://doi.org/10.1002/fuce.200800030

Connor PA, Yue X, Savaniu CD, Price R, et al., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 8 (2018) 1800120. https://doi.org/10.1002/aenm.201800120

Ding D, Li X, Lai SY, Gerdes K, Liu M, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 7 (2014) 552. https://doi.org/10.1039/c3ee42926a

Chen S, Zhang H, Yao C, Lou H, et al., Review of SOFC cathode performance enhancement by surface modifications: recent advances and future directions, Energy Fuels, 37 (2023) 3470–3487. https://doi.org/10.1021/acs.energyfuels.2c03934

Kim S, Kim G, Manthiram A, A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications, Energy Fuels, 5 (2021) 5024–5037. https://doi.org/10.1039/D1SE00878A

Niu Y, Huo W, Yu Y, Li W, et al., Cathode infiltration with enhanced catalytic activity and durability for intermediate-temperature solid oxide fuel cells, Chin. Chem. Lett., 33 (2022) 674–682. https://doi.org/10.1016/j.cclet.2021.07.037

Tahir NNM, Baharuddin NA, Samat AA, Osman N, Somalu MR, A review on cathode materials for conventional and proton-conducting solid oxide fuel cells, J. Alloys Compd., 894 (2022) 162458. https://doi.org/10.1016/j.jallcom.2021.162458

Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, Yaremchenko AA, Recent advances in layered Ln2NiO4+δ nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A, 9 (2021) 154–195. https://doi.org/10.1039/D0TA08132A

Wang M, Su C, Zhu Z, Wang H, Ge L, Composite cathodes for protonic ceramic fuel cells: Rationales and materials, Composites Part B: Engineering, 238 (2022) 109881. https://doi.org/10.1016/j.compositesb.2022.109881

Mather GC, Muñoz-Gil D, Zamudio-García J, Porras-Vázquez JM, et al., Perspectives on cathodes for protonic ceramic fuel cells, Appl. Sci., 11 (2021) 5363. https://doi.org/10.3390/app11125363

Zhang W, Hu YH, Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices, Energy Sci. Eng., 9 (2021) 984–1011. https://doi.org/10.1002/ese3.886

Rehman J, Hanif MB, Khan MZ, Ullah M, et al., A review of proton-conducting electrolytes for efficient low-temperature solid oxide fuel cells: Progress, challenges, and perspectives, Energy Fuels, 38 (2024) 22637–22665. https://doi.org/10.1021/acs.energyfuels.4c03683

Chen X, Tan Y, Li Z, Liu T, et al., Advanced air electrodes for reversible protonic ceramic electrochemical cells: A comprehensive review, Adv. Mater., (2025) 2418620. https://doi.org/10.1002/adma.202418620

Guo Z, Xu L, Ling Y, Wang P, et al., A perspective on cathode materials for proton-conducting solid oxide fuel cells, Int. J. Hydrog. Energy, 106 (2025) 52–64. https://doi.org/10.1016/j.ijhydene.2025.01.461

Iwahara H, Uchida H, Morimoto K, High temperature solid electrolyte fuel cells using perovskite‐type oxide based on BaCeO3, J. Electrochem. Soc., 137 (1990) 462–465. https://doi.org/10.1149/1.2086463

Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H, Proton conductive properties of gadolinium-doped barium cerates at high temperatures, Solid State Ion., 53–56 (1992) 998–1003. https://doi.org/10.1016/0167-2738(92)90283-U

Maffei N, Pelletier L, Charland JP, McFarlan A, A direct ammonia fuel cell using barium cerate proton conducting electrolyte doped with gadolinium and praseodymium, Fuel Cells, 7 (2007) 323–328. https://doi.org/10.1002/fuce.200600038

Taherparvar H, Effect of humidification at anode and cathode in proton-conducting SOFCs, Solid State Ion., 162–163 (2003) 297–303. https://doi.org/10.1016/S0167-2738(03)00222-4

Pikalova E, Medvedev D, Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO3-based protonic ceramic fuel cell, Int. J. Hydrog. Energy, 41 (2016) 4016–4025. https://doi.org/10.1016/j.ijhydene.2015.11.092

Antonova EP, Bronin DI, Stroeva AYu, Polarization resistance of platinum electrodes in contact with proton-conducting La0.9Sr0.1ScO3–δ, Russ. J. Electrochem., 50 (2014) 613–616. https://doi.org/10.1134/S1023193514070027

Bi L, Traversa E, Tailoring electrode materials for proton-conducting solid oxide fuel/electrolysis cells with chemically stable BaZrO3 electrolyte, ECS Meet. Abstr., MA2016-01 (2016) 1360–1360. https://doi.org/10.1149/MA2016-01/28/1360

Lim D-K, Im H-N, Singh B, Song S-J, Investigations on electrochemical performance of a proton-conducting ceramic-electrolyte fuel cell with La0.8Sr0.2MnO3 cathode, J. Electrochem. Soc., 162 (2015) F547–F554. https://doi.org/10.1149/2.0551506jes

Hu H, Liu M, Interfacial polarization characteristics of Pt|BaCe0.8Gd0.2O3|Pt cells at intermediate temperatures, J. Electrochem. Soc., 144 (1997) 3561–3567. https://doi.org/10.1149/1.1838048

Antonova EP, Bronin DI, Electrical transport and kinetics of electrode processes in the system of (H2 + H2O + Ar), Pt|La0.9Sr0.1ScO3–δ, Russ. J. Electrochem., 52 (2016) 595–599. https://doi.org/10.1134/S102319351607003X

Wu S, Xu X, Li X, Bi L, High-performance proton-conducting solid oxide fuel cells using the first-generation Sr-doped LaMnO3 cathode tailored with Zn ions, Sci. China Mater., 65 (2022) 675–682. https://doi.org/10.1007/s40843-021-1821-4

Dai H, Xu X, Liu C, Ma C, et al., Tailoring a LaMnO3 cathode for proton-conducting solid oxide fuel cells: integration of high performance and excellent stability, J. Mater. Chem. A, 9 (2021) 12553–12559. https://doi.org/10.1039/D1TA01221E

Sun K, Yu Z, Ni Q, Li Y, et al., Highly durable Sr-doped LaMnO3-based cathode modified with Pr6O11 nano-catalyst for protonic ceramic fuel cells based on Y-doped BaZrO3 electrolyte, J. Eur. Ceram. Soc., 42 (2022) 4266–4274. https://doi.org/10.1016/j.jeurceramsoc.2022.04.008

Ahmad MZ, Ahmad SH, Chen RS, Ismail AF, et al., Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrog. Energy, 47 (2022) 1103–1120. https://doi.org/10.1016/j.ijhydene.2021.10.094

Filonova E, Gilev A, Maksimchuk T, Pikalova N, et al., Development of La1.7Ca0.3Ni1−yCuyO4+δ materials for oxygen permeation membranes and cathodes for intermediate-temperature solid oxide fuel cells, Membranes, 12 (2022) 1222. https://doi.org/10.3390/membranes12121222

He T, Zhou Q, Jin F. Cathodes for Solid Oxide Fuel Cell. 1st ed. John Wiley & Sons: New York, USA; 2020. p. 79–112. https://doi.org/10.1002/9783527812790.ch3

Lai Y-W, Lee K-R, Yang S-Y, Tseng C-J, et al., Production of La0.6Sr0.4Co0.2Fe0.8O3–δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells, Ceram. Int., 45 (2019) 22479–22485. https://doi.org/10.1016/j.ceramint.2019.07.270

Ma J, Pan Y, Wang Y, Chen Y, A Sr and Ni doped Ruddlesden−Popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells, J. Power Sources, 509 (2021) 230369. https://doi.org/10.1016/j.jpowsour.2021.230369

Medvedev DA, Pikalova EYu. Development of the cathode materials for intermediate-temperature SOFCs based on proton-conducting electrolytes. Springer International Publishing: Cham, Switzerland; 2018. p. 173–80. https://doi.org/10.1007/978-3-319-75702-5_20

Antonova EP, Stroeva AYu, Tropin ES, Electrode performance of La2NiO4+δ cathodes in contact with La0.9Sr0.1ScO3–δ proton-conducting oxide, J. Solid State Electrochem., 24 (2020) 1447–1451. https://doi.org/10.1007/s10008-020-04535-z

Pikalova E, Zhulanova T, Ivanova A, Tarutin A, et al., Optimized Pr1.6Ca0.4Ni1−yCuyO4+δ phases as promising electrode materials for CeO2- and BaCe(Zr)O3-based electrochemical cells, Ceram. Int., 50 (2024) 40476–40491. https://doi.org/10.1016/j.ceramint.2024.06.048

Fabbri E, Markus I, Bi L, Pergolesi D, Traversa E, Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs, Solid State Ion., 202 (2011) 30–35. https://doi.org/10.1016/j.ssi.2011.08.019

Chen Y, Liu H, Zhuang L, Wei Y, Wang H, Hydrogen permeability through Nd5.5W0.35Mo0.5Nb0.15O11.25–δ mixed protonic-electronic conducting membrane, J. Membr. Sci., 579 (2019) 33–39. https://doi.org/10.1016/j.memsci.2019.02.057

Vøllestad E, Strandbakke R, Tarach M, Catalán-Martínez D, et al., Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers, Nat. Mater., 18 (2019) 752–759. https://doi.org/10.1038/s41563-019-0388-2

Plekhanov MS, Kuzmin AV, Tropin ES, Korolev DA, Ananyev MV, New mixed ionic and electronic conductors based on LaScO3: Protonic ceramic fuel cells electrodes, J. Power Sources, 449 (2020) 227476. https://doi.org/10.1016/j.jpowsour.2019.227476

Stroeva AYu, Gorelov VP, Kuz’min AV, Conductivity of perovskites La0.9Sr0.1Sc1–xFexO3–α (x = 0.003–0.47) in oxidizing and reducing atmospheres, Phys. Solid State, 58 (2016) 1521–1527. https://doi.org/10.1134/S1063783416080278

Kim J, Sengodan S, Kwon G, Ding D, et al., Triple‐conducting layered perovskites as cathode materials for proton‐conducting solid oxide fuel cells, ChemSusChem, 7 (2014) 2811–2815. https://doi.org/10.1002/cssc.201402351

Strandbakke R, Cherepanov VA, Zuev AYu, Tsvetkov DS, et al., Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells, Solid State Ion., 278 (2015) 120–132. https://doi.org/10.1016/j.ssi.2015.05.014

Samat AA, Darus M, Osman N, Baharuddin NA, Anwar M, A short review on triple conducting oxide cathode materials for proton conducting solid oxide fuel cell, AIP Conf. Proc., 2339(1) (2021) 020233. https://doi.org/10.1063/5.0044224

Rasaki SA, Liu C, Lao C, Chen Z, A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells, Prog. Solid State Chem., 63 (2021) 100325. https://doi.org/10.1016/j.progsolidstchem.2021.100325

Yue Y, Yu S, Gu Y, Bi L, A new Fe-doped Ca3Co4O9 cathode for protonic ceramic fuel cells, Ceram. Int., 50 (2024) 40436–40444. https://doi.org/10.1016/j.ceramint.2024.06.237

Tarutina LR, Vdovin GK, Lyagaeva JG, Medvedev DA, BaCe0.7–xZr0.2Y0.1FexO3–δ derived from proton-conducting electrolytes: A way of designing chemically compatible cathodes for solid oxide fuel cells, J. Alloys Compd., 831 (2020) 154895. https://doi.org/10.1016/j.jallcom.2020.154895

Lee J-I, Park K-Y, Park H, Bae H, et al., Triple perovskite structured Nd1.5Ba1.5CoFeMnO9–δ oxygen electrode materials for highly efficient and stable reversible protonic ceramic cells, J. Power Sources, 510 (2021) 230409. https://doi.org/10.1016/j.jpowsour.2021.230409

Lu L, Liu Y, Zhang H, Xu Y, Chen H, Exploring the potential of triple conducting perovskite cathodes for high-performance solid oxide fuel cells: a comprehensive review, J. Mater. Chem. A, 11 (2023) 23613–23639. https://doi.org/10.1039/D3TA05035A

Choi S, Kucharczyk CJ, Liang Y, Zhang X, et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3 (2018) 202–210. https://doi.org/10.1038/s41560-017-0085-9

Chen K, Dai H, He S, Bi L, LaNi0.6Fe0.4O3–δ as a promising cathode for stable proton‐conducting solid oxide fuel cells, Fuel Cells, 18 (2018) 561–565. https://doi.org/10.1002/fuce.201700224

Ding H, Xue X, Liu X, Meng G, High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm0.5Sr0.5CoO3–δ perovskite cathode, J. Alloys Compd., 494 (2010) 233–235. https://doi.org/10.1016/j.jallcom.2009.11.180

Yang L, Liu Z, Wang S, Choi Y, et al., A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors, J. Power Sources, 195 (2010) 471–474. https://doi.org/10.1016/j.jpowsour.2009.07.057

Lin Y, Ran R, Zheng Y, Shao Z, et al., Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3–δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell, J. Power Sources, 180 (2008) 15–22. https://doi.org/10.1016/j.jpowsour.2008.02.044

Yang S, Wen Y, Zhang J, Lu Y, et al., Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln = La and Pr) air electrodes for proton-conducting reversible solid oxide cells, Electrochimica Acta, 267 (2018) 269–277. https://doi.org/10.1016/j.electacta.2018.02.053

Pikalova E, Kolchugin A, Koroleva M, Vdovin G, et al., Functionality of an oxygen Ca3Co4O9+δ electrode for reversible solid oxide electrochemical cells based on proton-conducting electrolytes, J. Power Sources, 438 (2019) 226996. https://doi.org/10.1016/j.jpowsour.2019.226996

Zhu Z, Tao Z, Bi L, Liu W, Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells, Mater. Res. Bull., 45 (2010) 1771–1774. https://doi.org/10.1016/j.materresbull.2010.06.059

He W, Yuan R, Dong F, Wu X, Ni M, High performance of protonic solid oxide fuel cell with BaCo0.7Fe0.22Sc0.08O3–δ electrode, Int. J. Hydrog. Energy, 42 (2017) 25021–25025. https://doi.org/10.1016/j.ijhydene.2017.08.107

Shan D, Gong Z, Wu Y, Miao L, et al., A novel BaCe0.5Fe0.3Bi0.2O3–δ perovskite-type cathode for proton-conducting solid oxide fuel cells, Ceram. Int., 43 (2017) 3660–3663. https://doi.org/10.1016/j.ceramint.2016.11.206

Ren R, Wang Z, Xu C, Sun W, et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells, J. Mater. Chem. A, 7 (2019) 18365–18372. https://doi.org/10.1039/C9TA04335G

Wu Y, Li K, Yang Y, Song W, et al., Investigation of Fe-substituted in BaZr0.8Y0.2O3–δ proton conducting oxides as cathode materials for protonic ceramics fuel cells, J. Alloys Compd., 814 (2020) 152220. https://doi.org/10.1016/j.jallcom.2019.152220

Osinkin D, Tropin E, Hydrogen production from methane and carbon dioxide mixture using all-solid-state electrochemical cell based on a proton-conducting membrane and redox-robust composite electrodes, J. Energy Chem., 69 (2022) 576–584. https://doi.org/10.1016/j.jechem.2022.02.019

Loureiro FJA, Ramasamy D, Mikhalev SM, Shaula AL, et al., La4Ni3O10±δ–BaCe0.9Y0.1O3–δ cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0.9Y0.1O3–δ symmetric cells, Int. J. Hydrog. Energy, 46 (2021) 13594–13605. https://doi.org/10.1016/j.ijhydene.2020.06.243

Jing J, Lei Z, Zheng Z, Wang H, et al., Tuning the oxygen vacancy of the Ba0.95La0.05FeO3–δ perovskite toward enhanced cathode activity for protonic ceramic fuel cells, International Journal of Hydrogen Energy, 47(83) (2022) 35449–35457. https://doi.org/10.1016/j.ijhydene.2022.08.118

Lyagaeva J, Medvedev D, Pikalova E, Plaksin S, et al., A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0.8Y0.2O3–δ and BaZr0.8Y0.2O3–δ proton electrolytes for solid oxide fuel cell application, Int. J. Hydrog. Energy, 42 (2017) 1715–1723. https://doi.org/10.1016/j.ijhydene.2016.07.248

Sun W, Shi Z, Fang S, Yan L, et al., A high performance BaZr0.1Ce0.7Y0.2O3–δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3–δ–Ce0.8Sm0.2O2–δ composite cathode, Int. J. Hydrog. Energy, 35 (2010) 7925–7929. https://doi.org/10.1016/j.ijhydene.2010.05.084

Xie D, Ling A, Yan D, Jia L, et al., A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell, Electrochimica Acta, 344 (2020) 136143. https://doi.org/10.1016/j.electacta.2020.136143

Antonova EP, Kolchugin AA, Pikalova EYu, Medvedev DA, Bogdanovich NM, Development of electrochemically active electrodes for BaCe0.89Gd0.1Cu0.01O3–δ proton conducting electrolyte, Solid State Ion., 306 (2017) 55–61. https://doi.org/10.1016/j.ssi.2017.02.001

Pikalova EYu, Bogdanovich NM, Kuz’min AV, Composite electrodes for proton conducting electrolyte of CaZr0.95Sc0.05O3–δ, Russ. J. Electrochem., 53 (2017) 752–760. https://doi.org/10.1134/S1023193517070096

Osinkin DA, Electrochemical behaviour of redox-robust electrode in contact with protonic electrolyte: Case of double-layered Sr2Fe1.5Mo0.5O6–δ-Ce0.8Sm0.2O2–δ composite, Int. J. Hydrog. Energy, 77 (2024) 1066–1073. https://doi.org/10.1016/j.ijhydene.2024.06.266

Chen D, Zhang Q, Lu L, Periasamy V, et al., Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e−/O2− mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes, J. Power Sources, 303 (2016) 305–316. https://doi.org/10.1016/j.jpowsour.2015.10.090

Li G, Zhang Y, Ling Y, He B, et al., Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells, J. Hydrog. Energy, 41 (2016) 5074–5083. https://doi.org/10.1016/j.ijhydene.2016.01.068

Bu Y, Joo S, Zhang Y, Wang Y, et al., A highly efficient composite cathode for proton-conducting solid oxide fuel cells, J. Power Sources, 451 (2020) 227812. https://doi.org/10.1016/j.jpowsour.2020.227812

Kalinina EG, Pikalova EYu, New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects, Russ. Chem. Rev., 88 (2019) 1179–1219. https://doi.org/10.1070/RCR4889

Dos Santos-Gómez L, Zamudio-García J, Caizán-Juanarena L, Porras-Vázquez JM, Marrero-López D, Design and optimization of self-assembled nanocomposite electrodes for SOFCs, J. Power Sources, 613 (2024) 234866. https://doi.org/10.1016/j.jpowsour.2024.234866

Shimada H, Yamaguchi T, Kishimoto H, Sumi H, et al., Nanocomposite electrodes for high current density over 3 A · cm−2 in solid oxide electrolysis cells, Nat. Commun., 10 (2019) 5432. https://doi.org/10.1038/s41467-019-13426-5

Stangl A, Riaz A, Rapenne L, Caicedo JM, et al., Tailored nano-columnar La2NiO4 cathodes for improved electrode performance, J. Mater. Chem. A, 10 (2022) 2528–2540. https://doi.org/10.1039/D1TA09110G

Pikalova EYu, Kalinina EG, Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev., 90 (2021) 703–749. https://doi.org/10.1070/RCR4966

Bieberle-Hütter A, Tuller HL, Fabrication and structural characterization of interdigitated thin film La1−xSrxCoO3 (LSCO) electrodes, J. Electroceramics, 16 (2006) 151–157. https://doi.org/10.1007/s10832-006-5945-9

Kan WH, Samson AJ, Thangadurai V, Trends in electrode development for next generation solid oxide fuel cells, J. Mater. Chem. A, 4 (2016) 17913–17932. https://doi.org/10.1039/C6TA06757C

Lei L, Tao Z, Hong T, Wang X, Chen F, A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3–δ cathode for proton conducting solid oxide fuel cells, J. Power Sources, 389 (2018) 1–7. https://doi.org/10.1016/j.jpowsour.2018.03.058

Zhao F, Liu Q, Wang S, Chen F, Infiltrated multiscale porous cathode for proton-conducting solid oxide fuel cells, J. Power Sources, 196 (2011) 8544–8548. https://doi.org/10.1016/j.jpowsour.2011.06.029

Wu T, Zhao Y, Peng R, Xia C, Nano-sized Sm0.5Sr0.5CoO3–δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9, Electrochimica Acta, 54 (2009) 4888–4892. https://doi.org/10.1016/j.electacta.2009.04.013

Ricote S, Bonanos N, Lenrick F, Wallenberg R, LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3–δ electrolyte, J. Power Sources, 218 (2012) 313–319. https://doi.org/10.1016/j.jpowsour.2012.06.098

Ricote S, Bonanos N, Rørvik PM, Haavik C, Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3–δ cathodes deposited on BaCe0.2Zr0.7Y0.1O3–δ by infiltration and spray pyrolysis, J. Power Sources, 209 (2012) 172–179. https://doi.org/10.1016/j.jpowsour.2012.02.090

Daʹas EH, Bi L, Boulfrad S, Traversa E, Nanostructuring the electronic conducting La0.8Sr0.2MnO3–δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600 °C, Sci. China Mater., 61 (2018) 57–64. https://doi.org/10.1007/s40843-017-9125-1

Tomov RI, Duncan R, Krauz M, Vasant Kumar R, Glowacki BA. Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication. 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015). Springer Proceedings in Energy. Springer: Cham; 10 (2016). https://doi.org/10.1051/e3sconf/20161000098

Li G, Jin H, Cui Y, Gui L, et al., Application of a novel (Pr0.9La0.1)2(Ni0.74Cu0.21Nb0.05)O4+δ-infiltrated BaZr0.1Ce0.7Y0.2O3–δ cathode for high performance protonic ceramic fuel cells, J. Power Sources, 341 (2017) 192–198. https://doi.org/10.1016/j.jpowsour.2016.11.008

Liu B, Jia L, Chi B, Pu J, Li J, A novel PrBaCo2O5+σ-BaZr0.1Ce0.7Y0.1Yb0.1O3 composite cathode for proton-conducting solid oxide fuel cells, Compos. Part B Eng., 191 (2020) 107936. https://doi.org/10.1016/j.compositesb.2020.107936

Shimada H, Yamaguchi Y, Sumi H, Mizutani Y, Enhanced La0.6Sr0.4Co0.2Fe0.8O3–δ-based cathode performance by modification of BaZr0.1Ce0.7Y0.1Yb0.1O3–δ electrolyte surface in protonic ceramic fuel cells, Ceram. Int., 47 (2021) 16358–16362. https://doi.org/10.1016/j.ceramint.2021.02.123

Ye X-F, Wen YB, Yang SJ, Lu Y, et al., Study of CaZr0.9In0.1O3–δ based reversible solid oxide cells with tubular electrode supported structure, Int. J. Hydrog. Energy, 42 (2017) 23189–23197. https://doi.org/10.1016/j.ijhydene.2017.07.195

Zvonareva IA, Starostin GN, Akopian MT, Murashkina AA, et al., Thermal and chemical expansion behavior of hydrated barium stannate materials, Ceram. Int., 49 (2023) 21923–21931. https://doi.org/10.1016/j.ceramint.2023.04.016

Starostin GN, Tsvetkov DS, Starostina IA, Sereda VV, et al., Fundamental and technological aspects of thermochemical expansion of proton-conducting oxides: a case study of BaSn1−xScxO3–δ, J. Mater. Chem. A, 12 (2024) 14022–14034. https://doi.org/10.1039/D4TA02402H

Lyagaeva J, Antonov B, Dunyushkina L, Kuimov V, et al., Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3–δ (Ln = Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications, Electrochimica Acta, 192 (2016) 80–88. https://doi.org/10.1016/j.electacta.2016.01.144

Dunyushkina LA, Belyakov SA, Filatov NM, Proton-conducting alkaline earth hafnates: A review of manufacturing technologies, physicochemical properties and electrochemical performance, J. Eur. Ceram. Soc., 43 (2023) 6681–6698. https://doi.org/10.1016/j.jeurceramsoc.2023.07.011

Dayaghi AM, Haugsrud R, Stange M, Larring Y, et al., Increasing the thermal expansion of proton conducting Y-doped BaZrO3 by Sr and Ce substitution, Solid State Ion., 359 (2021) 115534. https://doi.org/10.1016/j.ssi.2020.115534

Babiniec SM, Ricote S, Sullivan NP, Infiltrated lanthanum nickelate cathodes for use with BaCe0.2Zr0.7Y0.1O3–δ proton conducting electrolytes, J. Electrochem. Soc., 161 (2014) F717–F723. https://doi.org/10.1149/2.037406jes.

Sadykov VA, Pikalova EYu, Kolchugin AA, Fetisov AV, et al., Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production, Int. J. Hydrog. Energy, 45 (2020) 13625–13642. https://doi.org/10.1016/j.ijhydene.2018.03.039

Sun C, Yang S, Lu Y, Wen J, et al., Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells, J. Power Sources, 449 (2020) 227498. https://doi.org/10.1016/j.jpowsour.2019.227498

Kim J-H, Manthiram A, Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective, J. Mater. Chem. A, 3 (2015) 24195–24210. https://doi.org/10.1039/C5TA06212H

Wang X, Ma Z, Zhang T, Kang J, et al., Charge-transfer modeling and polarization DRT analysis of proton ceramics fuel cells based on mixed conductive electrolyte with the modified anode–electrolyte interface, ACS Appl. Mater. Interfaces, 10 (2018) 35047–35059. https://doi.org/10.1021/acsami.8b10429

Bi L, Shafi SP, Da’as EH, Traversa E, Tailoring the cathode–electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton‐conducting electrolytes, Small, 14 (2018) 1801231. https://doi.org/10.1002/smll.201801231

Sun W, Yan L, Shi Z, Zhu Z, Liu W, Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3–δ electrolyte membrane, J. Power Sources, 195 (2010) 4727–4730. https://doi.org/10.1016/j.jpowsour.2010.02.012

Yang L, Zuo C, Wang S, Cheng Z, Liu M, A novel composite cathode for low‐temperature SOFCs based on oxide proton conductors, Adv. Mater., 20 (2008) 3280–3283. https://doi.org/10.1002/adma.200702762

Bae H, Choi GM, Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0.8Y0.2O3–δ electrolytes, J. Power Sources, 285 (2015) 431–438. https://doi.org/10.1016/j.jpowsour.2015.03.090

Torabi A, Hanifi AR, Etsell TH, Sarkar P, Effects of porous support microstructure on performance of infiltrated electrodes in solid oxide fuel cells, Electrochem. Soc., 159 (2011) B201–B210. https://doi.org/10.1149/2.068202jes

Yildirim F, Timurkutluk C, Timurkutluk B, Investigation and optimization of infiltration parameters for nanostructured cathode electrodes in solid oxide fuel cells, Int. J. Hydrog. Energy, 114 (2025) 172–185. https://doi.org/10.1016/j.ijhydene.2025.03.013

Cable TL, Sofie SW, A symmetrical, planar SOFC design for NASA’s high specific power density requirements, J. Power Sources, 174 (2007) 221–227. https://doi.org/10.1016/j.jpowsour.2007.08.110

Zhi M, Mariani N, Gemmen R, Gerdes K, Wu N, Nanofiber scaffold for cathode of solid oxide fuel cell, Energy Env. Sci, 4 (2011) 417–420. https://doi.org/10.1039/C0EE00358A

Strandbakke R, Vøllestad E, Robinson SA, Fontaine M-L, Norby T, Ba0.5Gd0.8La0.7Co2O6–δ infiltrated in porous BaZr0.7Ce0.2Y0.1O3 backbones as electrode material for proton ceramic electrolytes, J. Electrochem. Soc., 164 (2017) F196–F202. https://doi.org/10.1149/2.0141704jes

Shin E-K, Anggia E, Parveen AS, Park J-S, Optimization of the protonic ceramic composition in composite electrodes for high-performance protonic ceramic fuel cells, Int. J. Hydrog. Energy, 44 (2019) 31323–31332. https://doi.org/10.1016/j.ijhydene.2019.09.247

Tang H, Jin Z, Wu Y, Liu W, Bi L, Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells, Electrochem. Commun., 100 (2019) 108–112. https://doi.org/10.1016/j.elecom.2019.01.022

Ding H, Wu W, Jiang C, Ding Y, et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production, Nat. Commun., 11 (2020) 1907. https://doi.org/10.1038/s41467-020-15677-z

Gondolini A, Mercadelli E, Casadio S, Sanson A, Freeze cast support for hydrogen separation membrane, J. Eur. Ceram. Soc., 42 (2022) 1053–1060. https://doi.org/10.1016/j.jeurceramsoc.2021.10.063

Saqib M, Lee J-I, Shin J-S, Park K, et al., Modification of oxygen-ionic transport barrier of BaCo0.4Zr0.1Fe0.4Y0.1O3 steam (air) electrode by impregnating samarium-doped ceria nanoparticles for proton-conducting reversible solid oxide cells, J. Electrochem. Soc., 166 (2019) F746–F754. https://doi.org/10.1149/2.0461912jes

Solís C, Navarrete L, Bozza F, Bonanos N, Serra JM, Catalytic surface promotion of composite cathodes in protonic ceramic fuel cells, ChemElectroChem, 2 (2015) 1106–1110. https://doi.org/10.1002/celc.201500068

Choi J, Shin M, Kim B, Park J-S, High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics, Int. J. Hydrog. Energy, 42 (2017) 13092–13098. https://doi.org/10.1016/j.ijhydene.2017.04.061

Papac M, Stevanović V, Zakutayev A, O’Hayre R, Triple ionic–electronic conducting oxides for next-generation electrochemical devices, Nat. Mater., 20 (2021) 301–313. https://doi.org/10.1038/s41563-020-00854-8

Hwang SH, Kim SK, Nam J-T, Park J-S, Triple-component composite cathode for performance optimization of protonic ceramic fuel cells, Int. J. Hydrog. Energy, 46 (2021) 33551–33560. https://doi.org/10.1016/j.ijhydene.2021.07.179

Jing J, Lei Z, Wang C, Zheng Z, et al., Boosting performance of a protonic ceramic fuel cell by the incorporation of active nano-structured layers, Chem. Eng., 11 (2023) 10303–10310. https://doi.org/10.1021/acssuschemeng.3c00706

Xia Y, Xu X, Teng Y, Lv H, et al., A novel BaFe0.8Zn0.1Bi0.1O3–δ cathode for proton conducting solid oxide fuel cells, Ceram. Int., 46 (2020) 25453–25459. https://doi.org/10.1016/j.ceramint.2020.07.015

Chen C, Wang Z, Miao X, Sun C, et al., Cycling performance and interface stability research of tubular protonic reversible solid oxide cells with air electrodes by different manufacturing processes, Electrochem. Commun., 151 (2023) 107507. https://doi.org/10.1016/j.elecom.2023.107507

Wang Q, Tong X, Ricote S, Sažinas R, et al., Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3–δ electrodes for steam splitting in protonic ceramic electrolysis cells, Adv. Powder Mater., 1 (2022) 100003. https://doi.org/10.1016/j.apmate.2021.09.003

Kiebach R, Knöfel C, Bozza F, Klemensø T, Chatzichristodoulou C, Infiltration of ionic-, electronic- and mixed-conducting nano particles into La0.75Sr0.25MnO3–Y0.16Zr0.84O2 cathodes – A comparative study of performance enhancement and stability at different temperatures, J. Power Sources, 228 (2013) 170–177. https://doi.org/10.1016/j.jpowsour.2012.11.070

Kiebach R, Zielke P, Veltzé S, Ovtar S, et al., On the properties and long-term stability of infiltrated lanthanum cobalt nickelates (LCN) in solid oxide fuel cell cathodes, J. Electrochem. Soc., 164 (2017) F748–F758. https://doi.org/10.1149/2.0361707jes

Liu Y, Guo Y, Ran R, Shao Z, A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3–δ electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid, J. Membr. Sci., 437 (2013) 189–195. https://doi.org/10.1016/j.memsci.2013.03.002

Lacz A, Pasierb P, Electrical properties and chemical stability of BaCe0.9Y0.1O3-BaWO4 composites synthesized by co-sintering and impregnation method, Solid State Ion., 302 (2017) 152–157. https://doi.org/10.1016/j.ssi.2016.12.006

Huang W-C, Chen T-C, Chang H-Y, Single composite electrolyte prepared by infiltration and characterization, Int. J. Hydrog. Energy, 107 (2025) 666–678. https://doi.org/10.1016/j.ijhydene.2024.04.090

Amiri S, Paydar MH, Effect of pore formers characteristics and melt infiltration parameters on microstructure and electrical properties of BaCe0.7Zr0.1Y0.2O3–δ-carbonate composite electrolyte, J. Alloys Compd., 735 (2018) 172–183. https://doi.org/10.1016/j.jallcom.2017.11.067




DOI: https://doi.org/10.15826/elmattech.2025.4.054

Copyright (c) 2025 Elena Yu. Pikalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.