Cover Image

Details on oxygen surface exchange mechanism over Pr1.6Ca0.4Ni1−yCuyO4+δ solid oxide fuel cell/electrolyzer air electrodes

Vladislav A. Sadykov, Ekaterina M. Sadovskaya, Nikita F. Eremeev, Elena Yu. Pikalova

Abstract


In the design of solid oxide fuel cell/electrolyzer air electrodes, the oxygen mobility and surface reactivity are of paramount importance. In this study, the oxygen surface heteroexchange rate is examined for a series of promising electrode materials, Pr1.6Ca0.4Ni1−yCuyO4+δ (y = 0.0–0.4). The investigation encompasses the relationship between this rate and the structural, surface, and electrochemical properties. Single-phase materials synthesized by a nitrate combustion technique using glycerol as a fuel possess an orthorhombic structure. The oxygen surface reactivity is studied by the temperature-programmed isotope exchange of oxygen with 18O2 in a flow reactor. The values of the oxygen heteroexchange rate (R*) and surface exchange constant (k*) are acquired using mathematical modeling. The isotope exchange between the gas oxygen and the sample surface occurs primarily via the R2-type of exchange mechanism, i.e., the simultaneous exchange of two atoms of the oxygen molecule with two atoms of oxygen in the sample surface. The process is limited by surface exchange of oxygen characterized by high values of surface exchange constant (up to ~ 10–5 cm/s at 700 °C). The best characteristics are achieved for the Pr1.6Ca0.4Ni1−yCuyO4+δ samples, y = 0.0–0.2. There is a correlation of the oxygen exchange kinetic parameters (surface exchange constant, tracer diffusion coefficient) with the electrochemical properties of the electrodes according to the Adler–Lane–Steele model.

Keywords


solid oxide fuel cells; solid oxide electrolyzers; layered nickelates; oxygen surface exchange; isotope exchange of oxygen

Full Text:

PDF

References


Peng C, Han X, Mabaleha S, Kwong P, et al., Recent advances in perovskite air electrode materials for protonic solid oxide electrochemical cells, Energy Environ. Sci., 18(10) (2025) 4555–4595. https://doi.org/10.1039/D5EE00983A

Liu F, Su Z, Li H, Wang Q, et al., Status and prospects of electrode materials for symmetrical solid oxide fuel cells: A concise review, Ionics, 31(5) (2025) 3877–3894. https://doi.org/10.1007/s11581-025-06182-8

Chen X, Tan Y, Li Z, Liu T, et al., Advanced air electrodes for reversible protonic ceramic electrochemical cells: A comprehensive review, Adv. Mater., (2025) 2418620. https://doi.org/10.1002/adma.202418620

Kang HC, Park YJ, Baek SY, Kim J, et al., Recent breakthroughs in cathode of protonic ceramic fuel cells: Materials, functionalization, and future perspectives, InfoMat, (2025) e70025. https://doi.org/10.1002/inf2.70025

Zhu Y, Tang Z, Yuan L, Li B, et al., Beyond conventional structures: Emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis, Chem. Soc. Rev., 54(2) (2025) 1027–1092. https://doi.org/10.1039/D3CS01020A

Samreen A, Ali MS, Huzaifa M, Ali N, et al., Advancements in perovskite-based cathode materials for solid oxide fuel cells: A comprehensive review, Chem. Rec., 24(1) (2024) e202300247. https://doi.org/10.1002/tcr.202300247

Jiang S, Zheng X, Sun W, Toward advanced fuel electrodes for high-performance proton-conducting ceramic cells, Adv. Energy Mater., 15(4) (2025) 2403745. https://doi.org/10.1002/aenm.202403745

Yatoo MA, Skinner SJ, Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review, Mater. Today: Proc., 56(6) (2022) 3747–3754. https://doi.org/10.1016/j.matpr.2021.12.537

Qu J, Wang X, Zhang J, Shi H, et al., Gùtǐ yǎnghuà wù ránliào diànchí Ruddlesden-Popper xíng yǎnghuà wù yángjí de yánjiū jìnzhǎn [Recent advances in Ruddlesden–Popper oxide for solid oxide fuel cells anodes], J. Funct. Mater. / Gongneng Cailiao, 55(9) (2024) 9078–9086. Chinese. https://doi.org/10.3969/j.issn.1001-9731.2024.09.010

Zhu S, Fan F, Li Z, Wu J, et al., Metal exsolution from perovskite-based anodes in solid oxide fuel cells, Chem. Commun., 60(9) (2024) 1062–1071. https://doi.org/10.1039/D3CC05688K

Tong J, Zhang P, Zhuang F, Zheng Y, et al., Mixed-conducting ceramic membrane reactors for hydrogen production, React. Chem. Eng., 9(12) (2024) 3072–3099. https://doi.org/10.1039/D4RE00372A

Lu Q, Papaioannou EI, Development of mixed ionic and electronic conducting materials for gas separation membranes: A critical overview, Chem. Eng. J., 496 (2024) 153791. https://doi.org/10.1016/j.cej.2024.153791

Kwon Y I, Nam GD, Lee G, Choi S, et al., Recent progress and challenges in mixed ionic–electronic conducting membranes for oxygen separation, Adv. Energy Sustain. Res., 3(11) (2022) 2200086. https://doi.org/10.1002/aesr.202200086

Wang P, Liao L, Chu H, Xie Y, et al., Recent advances in Ruddlesden–Popper phase-layered perovskite Sr2TiO4 photocatalysts, Nanomaterials, 15(1) (2025) 20. https://doi.org/10.3390/nano15010020

Zhou C, Guo W, Fan J, Shi N, et al., Recent advances and future perspectives of Ruddlesden–Popper perovskite oxides electrolytes for all-solid-state batteries, Infomat, 6(8) (2024) e12563. https://doi.org/10.1002/inf2.12563

Neelakandan M, Dhandapani P, Ramasamy S, Duraisamy R, et al., A review on perovskite oxides and their composites as electrode materials for supercapacitors, RSC Adv., 15(21) (2025) 16766–16791. https://doi.org/10.1039/D5RA01950H

Desta HG, Gebreslassie G, Zhang J, Lin B, et al., Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering, Prog. Mater. Sci., 147 (2025) 101353. https://doi.org/10.1016/j.pmatsci.2024.101353

Yang G, Jung W, Ahn S J, Lee D, Controlling the oxygen electrocatalysis on perovskite and layered oxide thin films for solid oxide fuel cell cathodes, Appl. Sci., 9(5) (2019) 1030. https://doi.org/10.3390/app9051030

Sadykov VA, Eremeev NF, Shlyakhtina AV, Pikalova EYu, Advances in alternative metal oxide materials of various structures for electrochemical and catalytic applications, Int. J. Hydrogen Energy, 94 (2024) 179–208. https://doi.org/10.1016/j.ijhydene.2024.11.072

Adler SB, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 104(10) (2004) 4791–4844. https://doi.org/10.1021/cr020724o

Adler SB, Lane JA, Steele BCH, Electrode kinetics of porous mixed-conducting oxygen electrodes, J. Electrochem. Soc., 143(11) (1996) 3554–3564. https://doi.org/10.1149/1.1837252

Yang S, Liu G, Li W, Sabolsky EM, et al., Ab initio study on the effect of A-site doping on the stability, equilibrium volume, activation energy barrier, and oxygen diffusivity in La2−xAxNiO4+δ, Int. J. Hydrogen Energy, 119 (2025) 235–251. https://doi.org/10.1016/j.ijhydene.2025.03.239

Li X, Benedek NA, Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 27(7) (2015) 2647–2652. https://doi.org/10.1021/acs.chemmater.5b00445

Lee D, Lee HN, Controlling oxygen mobility in Ruddlesden–Popper oxides, Materials, 10(4) (2017) 368. https://doi.org/10.3390/ma10040368

Sadykov V, Pikalova E, Eremeev N, Shubin A, et al., Oxygen transport in Pr nickelates: Elucidation of atomic-scale features, Solid State Ionics, 344 (2020) 115155. https://doi.org/10.1016/j.ssi.2019.115155

Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, et al., Oxygen isotope exchange in La2NiO4±δ, Phys. Chem. Chem. Phys., 18(13) (2016) 9102–9111. https://doi.org/10.1039/C5CP05984D

Grobovoy IS, Kolchugin AA, Pikalova EYu, Suntsov AYu, Defect formation and thermodynamic properties of Ca-doped La2NiO4 oxides, Inorg. Chem. Commun., 179(2) (2025) 114823. https://doi.org/10.1016/j.inoche.2025.114823

Pikalova EYu, Guseva EM, Filonova EA, Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid oxide electrochemical cells, Electrochem. Mater. Technol., 2(4) (2024) 20232025. https://doi.org/10.15826/elmattech.2023.2.025

Sadykov V, Pikalova E, Sadovskaya E, Shlyakhtina A, et al., Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility, Membranes, 13(8) (2023) 698. https://doi.org/10.3390/membranes13080698

Amov G, Skinner SJ, Recent developments in Ruddlesden–Popper nickelate systems for solid oxide fuel cell cathodes, J. Solid State Electrochem., 10(8) (2006) 538–546. https://doi.org/10.1007/s10008-006-0127-x

Yin B, Li Y, Sun N, Ji X, et al., Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions, Electrochim. Acta, 370 (2021) 137747. https://doi.org/10.1016/j.electacta.2021.137747

Li W, Guan B, Zhang X, Yan J, et al., New mechanistic insight into the oxygen reduction reaction on Ruddlesden–Popper cathodes for intermediate-temperature solid oxide fuel cells, Phys. Chem. Chem. Phys., 18(12) (2016) 8502–8511. https://doi.org/10.1039/C6CP00056H

Gu X K, Nikolla E, Design of Ruddlesden−Popper oxides with optimal surface oxygen exchange properties for oxygen reduction and evolution, ACS Catal., 7(9) (2017) 5912–5920. https://doi.org/10.1021/acscatal.7b01483

Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, et al., Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4, Solid State Ionics, 335 (2019) 53–60. https://doi.org/10.1016/j.ssi.2019.02.012

Kolchugin AA, Pikalova EYu, Bogdanovich NM, Bronin DI, et al., Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate, Solid State Ionics, 288 (2016) 48–53. https://doi.org/10.1016/j.ssi.2016.01.035

Tropin E, Ananyev M, Porotnikova N, Khodimchuk A, et al., Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ, Phys. Chem. Chem. Phys., 21(9) (2019) 4779–4790. https://doi.org/10.1039/C9CP00172G

Muzykantov VS, Popovski VV, Boreskov GK, Kinetika izotopnogo obmena v sisteme molekulyarnyi kislorod – tvyodyi okisel [Kinetics of isotope exchange in molecular oxygen – solid oxide system], Kinet. Katal., 5(4) (1964) 624–629. Russian.

Muzykantov VS, Popovski VV, Boreskov GK, Kinetika i mekhanizm izotopnogo obmena v sisteme molekulyarnyi kislorod – tvyodyi okisel [Kinetics and mechanism of isotope exchange in molecular oxygen – solid oxide system]. In: Problemy kinetiki i kataliza, T.12 [Problems in kinetics and catalysis, V.12]. Moscow: Nauka, 1968. pp. 155–159. Russian.

Pikalova E, Zhulanova T, Ivanova A, Tarutin A, et al., Optimized Pr1.6Ca0.4Ni1−yCuyO4+δ phases as promising electrode materials for CeO2- and BaCe(Zr)O3-based electrochemical cells, Ceram. Int., 50(20C) (2024) 40476–40491. https://doi.org/10.1016/j.ceramint.2024.06.048

Zhulanova T, Filonova E, Ivanova A, Russkikh O, et al., Control physicochemical and electrochemical properties of Pr1.6Cа0.4Ni0.6Cu0.4O4+δ as a prospective cathode material for solid oxide cells through the synthesis process, Solid State Sci., 156 (2024) 107671. https://doi.org/10.1016/j.solidstatesciences.2024.107671

Sadykov V, Eremeev N, Sadovskaya E, Zhulanova T, et al., Impact of calcium and copper co-doping on the oxygen transport of layered nickelates: A case study of Pr1.6Ca0.4Ni1–yCuyO4+δ and a comparative analysis, Chim. Tech. Acta, 11(4) (2024) 202411411. https://doi.org/10.15826/chimtech.2024.11.4.11

Sadykov VA, Sadovskaya EM, Uvarov NF, Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity, Russ. J. Electrochem., 51(5) (2015) 458–467. https://doi.org/10.1134/S1023193515050109

Sadykov V, Sadovskaya E, Bobin A, Kharlamova T, et al., Temperature-Programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients, Solid State Ionics, 271 (2015) 69–72. https://doi.org/10.1016/j.ssi.2014.11.004

Boreskov GK, Muzykantov VS, Investigation of oxide-type oxidation catalysts by reactions of oxygen isotopic exchange, Ann. N. Y. Acad. Sci., 213(1) (1973) 137–170. https://doi.org/10.1111/j.1749-6632.1973.tb51065.x

Muzykantov VS, Isotopic studies of dioxygen activation on oxide catalysts for oxidation: Problems, results and perspectives, React. Kinet. Catal. Lett., 35(1–2) (1987) 437–447. https://doi.org/10.1007/BF02062178

den Otter MW, Boukamp BA, Bouwmeester HJM, Theory of oxygen isotope exchange, Solid State Ionics, 139(1–2) (2001) 89–94. https://doi.org/10.1016/S0167-2738(00)00801-8

Huang Q A, Hui R, Wang B, Zhang J, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochim. Acta, 52(28) (2007) 8144–64. https://doi.org/10.1016/j.electacta.2007.05.071

Ananyev MV, Kurumchin EKh, Porotnikova NM, Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites, Russ. J. Electrochem., 46(7) (2010) 789–797. https://doi.org/10.1134/S1023193510070128

Aguadero A, Alonso J, Escudero M, Daza L, Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes, Solid State Ionics, 179(11–12) (2008) 393–400. https://doi.org/10.1016/j.ssi.2008.01.099

Sakai M, Wang C, Okiba T, Soga H, et al., Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures, J. Therm. Anal. Calorim., 135(5) (2019) 2765–2774. https://doi.org/10.1007/s10973-018-7621-0

Popovski VV, Boreskov GK, Kinetika izotopnogo obmena molekulyarnogo kisloroda s kislorodom poverkhnosti okislov zheleza, kobal’ta, nikelya i medi [Kinetics of isotope exchange of molecular O2 with oxide surfaces of Fe, Co, Ni, and Cu], Kinet. Catal., 1(4) (1960) 566–575. Russian.

Kaluzhskikh MS, Kazakov SM, Mazo GN, Istomin SYa, et al., High-temperature crystal structure and transport properties of the layered cuprates Ln2CuO4, Ln = Pr, Nd and Sm, J. Solid State Chem., 184(3) (2011) 698–704. https://doi.org/10.1016/j.jssc.2011.01.035

Miyoshi S, Furuno T, Sangoanruang O, Matsumoto H, et al., Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides, J. Electrochem. Soc., 154(1) (2007) B57–B62. https://doi.org/10.1149/1.2387103

Yashima M, Yamada H, Nuansaeng S, Ishihara T, Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: design concept of interstitial ion conductors through the higher-valence d10 dopant and Jahn-Teller effect, Chem. Mater., 24(21) (2012) 4100–4113. https://doi.org/10.1021/cm3021287

Biesinger MC, Payne BP, Lau LWM, Gerson A, et al., X‐ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal., 41(4) (2009) 324–332. https://doi.org/10.1002/sia.3026

Vincent Crist B. Handbooks of Monochromatic XPS Spectra: Volume 2: Commercially Pure Binary Oxides and a few Common Carbonates and Hydroxides: John Wiley & Sons; 2000. 27 p.

Ishihara T. Perovskite oxide for solid oxide fuel cells. New York: Springer Science + Business Media, LLC; 2009. 302 p.

Kilner JA, De Souza RA, Fullarton IC, Surface exchange of oxygen in mixed conducting perovskite oxides, Solid State Ionics, 86–88(2) (1996) 703–709. https://doi.org/10.1016/0167-2738(96)00153-1

De Souza RA, Limits to the rate of oxygen transport in mixed-conducting oxides, J. Mater. Chem. A, 5(38) (2017) 20334–20350. https://doi.org/10.1039/C7TA04266C

Abd Aziz AJ, Baharuddin NA, Lim BH, Characterization of oxygen diffusion and catalytic behavior of composite materials in solid oxide fuel cells using the non-destructive Adler-Lane-Steele method, e-J, Nondestructi. Testing, 29(6) (2024). https://doi.org/10.58286/30310

Endler-Schuck C, Joos J, Niedrig C, Weber A, et al., The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes, Solid State Ionics, 269 (2015) 67–79. https://doi.org/10.1016/j.ssi.2014.11.018

Goel V, Cox D, Barnett SA, Thornto K, Simulation of the electrochemical impedance in a three-dimensional, complex microstructure of solid oxide fuel cell cathode and its application in the microstructure characterization, Front. Chem., 9 (2021) 627699. https://doi.org/10.3389/fchem.2021.627699




DOI: https://doi.org/10.15826/elmattech.2025.4.053

Copyright (c) 2025 Vladislav A. Sadykov, Ekaterina M. Sadovskaya, Nikita F. Eremeev, Elena Yu. Pikalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.