Cover Image

Radiation-thermal sintering of oxide and composite materials for hydrogen energy by electron beam: A review

Nikita F. Eremeev, Yulia N. Bespalko, Mikhail A. Mikhailenko, Mikhail V. Korobeynikov, Vladislav A. Sadykov

Abstract


The scaling of hydrogen technologies – from production and storage to utilization – is critically dependent on advanced manufacturing methods for key components such as catalytic reactors, permselective membranes, and electrochemical cells. The synthesis and processing of high-performance ceramic materials for these devices necessitates innovative sintering approaches. Radiation-thermal sintering (RTS) employing high-energy electron beams offers a viable alternative to conventional sintering methods, facilitating the expeditious fabrication of ceramics with tailored mechanical, morphological, structural, and transport properties. Although techniques such as spark plasma and microwave sintering have been the subject of extensive reviews, RTS remains comparatively under-explored. This review comprehensively examines the application of RTS for engineering functional ceramics – including perovskites, Ruddlesden–Popper phases, fluorites, garnets, and magnetoplumbites. These ceramics are essential for solid oxide cells, oxygen/hydrogen separation membranes, catalysts for fuel transformation into hydrogen and syngas, and other applications. The current understanding of how RTS influences material properties and device performance is demonstrated. Furthermore, critical research gaps are identified, particularly concerning the impact of electron irradiation on defect equilibria, ionic conductivity, and long-term functional stability. This underscores the necessity for focused studies to fully harness RTS for the fabrication of next-generation energy devices.

Keywords


radiation-thermal sintering; electron beam; complex oxides; solid oxide fuel cells; permselective membranes

Full Text:

PDF

References


Phogat P, Chand B, Shreya, Jha R, et al., Int. J. Hydrogen Energy, 109 (2025) 465–485. https://doi.org/10.1016/j.ijhydene.2025.02.133

Li J, Cai Q, Horri BA, Mater. Adv., 6(1) (2025) 39–83. https://doi.org/10.1039/D4MA00690A

Fan L, Luo W, Fan Q, Hu Q, et al., Chem. Sci., 16(16) (2025) 6620–6687. https://doi.org/10.1039/D4SC08300H

Kudapa VK, Paliyal PS, Mondal A, Mondal S, Fusion Sci. Technol., 80(7) (2024) 803–825. https://doi.org/10.1080/15361055.2023.2290898

Singh R, Prasad B, Ahn Y H, Gas Sci. Eng., 123 (2024) 205256. https://doi.org/10.1016/j.jgsce.2024.205256

Sanni SE, Oni BA, Okoro EE, Korean J. Chem. Eng., 41(4) (2024) 965–699. https://doi.org/10.1007/s11814-024-00092-7

Awad MM, Hussain I, Mustapha U, Ahmed Taialla O, et al., Int. J. Hydrogen Energy, 76 (2024) 202–233. https://doi.org/10.1016/j.ijhydene.2024.03.319

Gavalda-Diaz O, Saiz E, Chevalier J, Bouville F, Int. Mater. Rev., 70(1) (2025) 3–30. https://doi.org/10.1177/09506608241308337

Sun H, Zou B, Wang X, Chen W, et al., Mater. Chem. Phys., 319 (2024) 129337. https://doi.org/10.1016/j.matchemphys.2024.129337

Pasagada VKV, Yang N, Xu C, Ceram. Int., 48(7) (2022) 10174–10186. https://doi.org/10.1016/j.ceramint.2021.12.229

German RM, Suri P, Park SJ, J. Mater. Sci., 44(1) (2009) 1–39. https://doi.org/10.1007/s10853-008-3008-0

Milisavljevic I, Zhang M, Jiang Q, Liu Q, et al., J. Materiomics, 11(2) (2025) 100872. https://doi.org/10.1016/j.jmat.2024.04.002

Wakai F, Okuma G, Nishiyama N, Mater. Today: Proc., 16(1) (2019) 4–13. https://doi.org/10.1016/j.matpr.2019.05.304

Dunyushkina L, Electrochem. Mater. Technol., 3(3) (2024) 20243040. https://doi.org/10.15826/elmattech.2024.3.040

Gorelov V, Electrochem. Mater. Technol., 3(3) (2024) 20243041. https://doi.org/10.15826/elmattech.2024.3.041

Sındıraç C, Çakırlar S, Büyükaksoy A, Akkurt S, J. Eur. Ceram. Soc., 39(2–3) (2019) 409–417. https://doi.org/10.1016/j.jeurceramsoc.2018.09.029

Bigeard A, Girard L, Boller E, Trillaud V, et al., Materialia, 39 (2025) 102269. https://doi.org/10.1016/j.mtla.2024.102269

Toor SY, Croiset E, Ceram. Int., 46(1) (2020) 1148–1157. https://doi.org/10.1016/j.ceramint.2019.09.083

Shlyakhtina AV, Savvin SN, Lyskov NV, Kolbanev IV, et al, J. Mater. Chem. A, 5(16) (2017) 7618–7630. https://doi.org/10.1039/C6TA09963G

Yu M, Feng Q, Liu Z, Zhang P, et al., Crystals, 14(3) (2024) 225. https://doi.org/10.3390/cryst14030225

Aman B, Acharya S, Reeja-Jayan B, Adv. Eng. Mater., 26(9) (2024) 2302065. https://doi.org/10.1002/adem.202302065

Lv Z, Lu M, Xiao G, Ma Y, et al., J. Am. Ceram. Soc., 108(2) (2025) e20196. https://doi.org/10.1111/jace.20196

Gan L, Park Y J, Zhu L L, Go S I, et al., Ceram. Int., 42(12) (2016) 13952–13959. https://doi.org/10.1016/j.ceramint.2016.05.208

Gonzalez-Martinez IG, Bachmatiuk A, Bezugly V, Kunstmann J, et al., Nanoscale, 8(22) (2016) 11340–11362. https://doi.org/10.1039/c6nr01941b

Milberg J, Sigl M, Prod. Eng. Res. Devel., 2(2) (2008) 117–122. https://doi.org/10.1007/s11740-008-0088-2

Zhou L, Miller J, Vezza J, Mayster M, et al., Sensors, 24(9) (2024) 2668. https://doi.org/10.3390/s24092668

Tokita M, Ceramics, 4(2) (2021) 160–198. https://doi.org/10.3390/ceramics4020014

Pavlov YuS, Petrenko VV, Alekseev PA, Bystrov PA, et al., Radiat. Phys. Chem., 198 (2022) 110199. https://doi.org/10.1016/j.radphyschem.2022.110199

Klimov AS, Bakeev IYu, Dvilis ES, Oks EM, et al., Vacuum, 169 (2019) 108933. https://doi.org/10.1016/j.vacuum.2019.108933

Annenkov YuM, Russ. Phys. J., 39(11) (1996) 1146–1159. https://doi.org/10.1007/BF02436157

Klimov AS, Zenin AA, Oks EM, Khasanov OL, et al., Electrotechnica & Electronica (E+E), 49(5–6) (2014) 315–318.

Huang S, Yue C, Uvdal K, Hu Z, Nanoscale Adv., 7(2) (2025) 384–418. https://doi.org/10.1039/D4NA00806E

Kotel’nikov IA. Lektsii po fizike plazmy. Tom 1: Osnovy fiziki plazmy [Lectures on plasma physics. Volume 1: Fundamentals of plasma physics]. Saint-Petersburg: Lan’; 2021. 400 p. Russian.

Pikaev AK. Sovremennaya radiatsionnaya khimiya, Tom 1, Osnovnyye polozheniya, experimental’naya tekhnika i metody [Modern radiation chemistry, Volume 1, Basics, experimental techniques and methods]. Moscow: Nauka; 1985. 376 p. Russian.

Pikaev AK. Sovremennaya radiatsionnaya khimiya, Tom 3, Tvyordoye telo i polimery. Prikladnyye aspekty [Modern radiation chemistry, Volume 3, Solid state and polymers. Applied Aspects]. Nauka, Moscow; 1987. 448 p. Russian.

Stepanov VA, Tech. Phys., 43(8) (1998) 938–942. https://doi.org/10.1134/1.1259104

Zäh MF, Lutzmann S, Prod. Eng. Res. Devel., 4 (2010) 15–23. https://doi.org/10.1007/s11740-009-0197-6

Klimov AS, Bakeev IYu, Oks EM, Tran VT, et al., J. Phys. Conf. Ser., 1488(1) (2020) 012010. https://doi.org/10.1088/1742-6596/1488/1/012010

Klimov AS, Bakeev IYu, Oks EM, Zenin AA, Ceram. Int., 46(14) (2020) 22276–22281. https://doi.org/10.1016/j.ceramint.2020.05.306

Ancharova UV, Mikhailenko MA, Tolochko BP, Lyakhov NZ, et al., IOP Conf. Ser.: Mater. Sci. Eng., 110(1) (2016) 012110. https://doi.org/10.1088/1757-899X/110/1/012110

Sadykov V, Usoltsev V, Fedorova Yu, Mezentseva N, et al., In: Sintering of ceramics – New emerging techniques. Vienna: InTech; 2012. pp. 121–140. https://doi.org/10.5772/34958

Xiong G, Jia J, Zhao L, Liu X, et al., Sci. Bull., 66(4) (2021) 386–406. https://doi.org/10.1016/j.scib.2020.08.037

Sigl M, Lutzmann S, Zaeh MF, In: Proceedings for the 2006 International Solid Freeform Fabrication Symposium; 2006 Aug 14–16; Austin, TX, USA. pp. 464–477. https://doi.org/10.26153/tsw/7154

Zaeh MF, Kahnert M, Prod. Eng. Res. Devel., 3(3) (2009) 217–224. https://doi.org/10.1007/s11740-009-0157-1

Sadykov VA, Mezentseva NV, Bobrova LN, Smorygo OL, et al., In: Advanced nanomaterials for catalysis and energy. Synthesis, characterization and applications. Elsevier; 2019. pp. 435–514. https://doi.org/10.1016/B978-0-12-814807-5.00012-7

Kahnert M, Lutzmann S, Zaeh MF, In: Proceedings for the 2007 International Solid Freeform Fabrication Symposium; 2007 Aug 6–8; Austin, TX, USA. pp. 88–99. https://doi.org/10.26153/tsw/7196

Burdovitsin V, Dvilis ES, Zenin A, Klimov A, et al., Adv. Mater. Res., 872 (2013) 150–156. https://doi.org/10.4028/www.scientific.net/AMR.872.150

Solodkyi I, Bogomol I, Loboda P, Int. J. Refract. Met. Hard. Mater., 102 (2022) 105730. https://doi.org/10.1016/j.ijrmhm.2021.105730

Körner C, Attar E, Heinl P, J. Mater. Process. Technol., 211(6) (2011) 978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016

Zenin AA, Bakeev IYu, Dolgova AV, Klimov AS, et al., Tech. Phys., 69(5) (2024) 1472–1478. https://doi.org/10.1134/S1063784224040509

Klimov AS, Bakeev IYu, Zenin AA, IOP Conf. Ser.: Mater. Sci. Eng., 597(1) (2019) 012070. https://doi.org/10.1088/1757-899X/597/1/012070

Jia Y, Mehta ST, Li R, Rahman Chowdhury MA, et al., Ceram. Int., 47(2) (2021) 2397–2405. https://doi.org/10.1016/j.ceramint.2020.09.082

Komlev AS, Tavricheskii Nauchnyi Obozrevatel’, 12(1) (2016) 139–141. Russian.

Charlesby A. Atomic radiation and polymers. Oxford, London, New York, Paris: Pergamon Press; 1960. 570 p. https://doi.org/10.1016/C2013-0-07861-9

Henley EJ, Johnson ER. The chemistry and physics of high energy reactions. Washington, DC: University Press; 1969. 475 p.

Kroc TK, Radiat. Phys. Chem., 204 (2023) 110702. https://doi.org/10.1016/j.radphyschem.2022.110702

Volmer F, Seidler I, Bisswanger T, Tu J S, et al., J. Phys. D: Appl. Phys., 54(22) (2021) 225304. https://doi.org/10.1088/1361-6463/abe89b

Egerton RF, McLeod R, Wang F, Malac M, Ultramicroscopy, 110(8) (2010) 991–997. https://doi.org/10.1016/j.ultramic.2009.11.003

Xue H, Zhang M, Liu J, Wang J, et al., Front. Chem., 10 (2022) 889203. https://doi.org/10.3389/fchem.2022.889203

Haug E, Nakel W. The elementary process of bremsstrahlung. World Scientific; 2004. 272 p. https://doi.org/10.1142/5371

Walker II RC, Shi T, Silva EC, Jovanovic I, et al., Phys. Status Solidi A, 213(12) (2016) 3065–3077. https://doi.org/10.1002/pssa.201600395

Natelauri E, Pkhaladze M, Atskvereli M, In: Proton therapy. Scientific questions and future direction. London: IntechOpen; 2024. pp. 28–48. https://doi.org/10.5772/intechopen.1003188

Nesheva D, ACS Omega, 8(14) (2023) 12603–12612. https://doi.org/10.1021/acsomega.3c00486

Kinchin GH, Pease RS, Rep. Prog. Phys., 18(1) (1955) 1–51. https://doi.org/10.1088/0034-4885/18/1/301

Klinger MI, Lushchik ChB, Mashovets TV, Kholodar’ GA, et al., Sov. Phys. Usp., 28(11) (1985) 994–1014. https://doi.org/10.1070/PU1985v028n11ABEH003977

Oksengendler BL, Ashirmetov AKh, Iskandarova FA, Zatsepin AF, et al., J. Surf. Invest. X-ray Synchrotron Neutron Tech., 17(1) (2023) 31–42. https://doi.org/10.1134/S1027451023010196

Ovchinnikov VV, Makarov EV, Semionkin VA, Gushchina NV, Vacuum, 201 (2022) 111040. https://doi.org/10.1016/j.vacuum.2022.111040

Ong CK, J. Phys. C: Solid State Phys., 16(21) (1983) 4081–4085. https://doi.org/10.1088/0022-3719/16/21/008

Modine FA, Chen Y, Major RW, Wilson TM, Phys. Review B, 14(4) (1976) 1739–1750. https://doi.org/10.1103/physrevb.14.1739

Serpone N, J. Phys. Chem. B, 110(48) (2006) 24287–24293. https://doi.org/10.1021/jp065659r

Bartram RH, Swenberg CE, Fournier JT, Phys. Rev., 139(3A) (1965) A941–A951. https://doi.org/10.1103/physrev.139.a941

Chen Y, Abraham MM, J. Phys. Chem. Solids, 51(7) (1990) 747–764. https://doi.org/10.1016/0022-3697(90)90147-8

Dolgov SA, Kärner T, Lushchik A, Maaroos A, et al., Phys. Solid State, 53(6) (2011) 1244–1252. https://doi.org/10.1134/S1063783411060084

Knotek ML, Feibelman PJ, Surf. Sci., 90(1) (1979) 78–90. https://doi.org/10.1016/0039-6028(79)90011-6

Knotek ML, Feibelman PJ, Phys. Rev. Lett., 40(14) (1978) 964–967. https://doi.org/10.1103/PhysRevLett.40.964

Niehus H, Losch W, Surf. Sci., 111(2) (1981) 344–350. https://doi.org/10.1016/0039-6028(80)90713-X

Buckett MI, Strane J, Luzzi DE, Zhang JP, et al., Ultramicroscopy, 29(1–4) (1989) 217–227. https://doi.org/10.1016/0304-3991(89)90249-0

Sun J, Li M, Liu H, Guo L, et al., Micron, 190 (2025) 103786. https://doi.org/10.1016/j.micron.2025.103786

Sokolović I, Guedes EB, van Waas TP, Guo F, et al., Nat. Commun., 16 (2025) 4594. https://doi.org/10.1038/s41467-025-59258-4

Cao K, Zhao Q, Liao J, Yan F, et al, Microstructures, 5(2) (2025) 2025025. https://doi.org/10.20517/microstructures.2024.120

Kitta M, Tada K, ACS Appl. Energy Mater., 4(2) (2021) 1377–1386. https://doi.org/10.1021/acsaem.0c02617

Alex C, Shukla G, John NS, Electrochim. Acta, 385 (2021) 138425. https://doi.org/10.1016/j.electacta.2021.138425

Buckett MI, Marks LD, Mat. Res. Soc. Symp. Proc., 235(1) (1992) 339–344. https://doi.org/10.1557/PROC-235-339

Qin W, Szpunar JA, Umakoshi Y,Acta Mater., 59(5) (2011) 2221–2228. https://doi.org/10.1016/j.actamat.2010.12.025

Zhang Y, Wang Y, Wu Y, Shu X, et al., Nat. Commun., 14 (2023) 4012. https://doi.org/10.1038/s41467-023-39812-8

Seo JH, Na S, Ahn SJ, Park K, et al., J. Phys. Chem. C, 128(22) (2024) 9099–9104. https://doi.org/10.1021/acs.jpcc.4c00600

Parajuli P, Kwon BJ, Key B, Cabana J, et al., Microsc. Microanal., 26(S2) (2020) 788–790. https://doi.org/10.1017/S1431927620015846

Rao SK, Rajesh Kumar R, Ahmed SSSJ, Al-Mazroua HA, et al., Mater. Today Commun., 43 (2025) 111540. https://doi.org/10.1016/j.mtcomm.2025.111540

Tsukuma K, Yamashita I, Kusunose T, J. Am. Ceram. Soc., 91(3) (2008) 813–818. https://doi.org/10.1111/j.1551-2916.2007.02202.x

Jiang N, Micron, 171 (2023) 103482. https://doi.org/10.1016/j.micron.2023.103482

Węglowski MSt, Błacha S, Phillips A, Vacuum, 130 (2016) 72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

Landau E, Tiferet E, Ganor YI, Ganeriwala RK, et al, Addit. Manuf., 36 (2020) 101535. https://doi.org/10.1016/j.addma.2020.101535

Atas MS, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 548 (2024) 165252. https://doi.org/10.1016/j.nimb.2024.165252

Jiang N, Rep. Prog. Phys., 79(1) (2015) 016501. https://doi.org/10.1088/0034-4885/79/1/016501

Susi T, Meyer JC, Kotakoski J, Nat. Rev. Phys., 1 (2019) 397–405. https://doi.org/10.1038/s42254-019-0058-y

Jiang N, Micron, 83 (2016) 79–92. https://doi.org/10.1016/j.micron.2016.02.007

Kim H M, Lee M H, Kim K B, Nanotechnology, 22(27) (2011) 275303. https://doi.org/10.1088/0957-4484/22/27/275303

Wang YC, Wang DC, Int. J. Autom. Smart Technol., 4(3) (2014) 157–162. https://doi.org/10.5875/ausmt.v4i3.556

Kim H M, Park K B, Kim J J, Chae H, et al., Nano Converg., 5 (2018) 32. https://doi.org/10.1186/s40580-018-0164-z

Medvedev DA, Int. J. Hydrogen Energy, 161 (2025) 150689. https://doi.org/10.1016/j.ijhydene.2025.150689

Khokhlova MO, Shubnikova EV, Tropin ES, Lyskov NV, et al., Int. J. Hydrogen Energy, 86 (2024) 960–967. https://doi.org/10.1016/j.ijhydene.2024.08.490

Fouad M, Guskov R, Kovalev I, Tropin E, et al., Ceram. Int., 50(21C) (2024) 43522–43529. https://doi.org/10.1016/j.ceramint.2024.08.203

Fan K, Yu M, Lei J, Mu S, Crystals, 14(7) (2024) 623. https://doi.org/10.3390/cryst14070623

Kudapa VK, Mondal S, Boca Raton: CRC Press; 2025. 168 p. https://doi.org/10.1201/9781003590682

Bragina OA, Shubnikova EV, Arapova MV, Nemudry AP, J. Eur. Ceram. Soc., 44(14) (2024) 116684. https://doi.org/10.1016/j.jeurceramsoc.2024.116684

Salehabadi A, Perry J, Zanganeh J, Moghtaderi B, Int. J. Hydrogen Energy, 106 (2025) 243–260. https://doi.org/10.1016/j.ijhydene.2025.01.283

Mi J, Chen J, Chen X, Liu X, et al., Chem. Eur. J., 29(8) (2023) e202202713. https://doi.org/10.1002/chem.202202713

Li H, Yu J, Gong Y, Lin N, et al., Sep. Purif. Technol., 307 (2023) 122716. https://doi.org/10.1016/j.seppur.2022.122716

Eremeev NF, Hanna SA, Sadykov VA, Bespalko YuN, Sustain. Energy Fuels, 9(17) (2025) 4554–4587. https://doi.org/10.1039/D5SE00359H

Sadykov V, Eremeev N, Alikina G, Sadovskaya E, et al., Solid State Ionics, 262 (2014) 707–712. https://doi.org/10.1016/j.ssi.2014.01.020

Sadykov V, Eremeev N, Sadovskaya E, Bobin A, et al., Solid State Ionics, 273 (2015) 35–40. https://doi.org/10.1016/j.ssi.2014.11.021

Ancharova UV, Mikhailenko MA, Tolochko BP, Lyakhov NZ, et al., IOP Conf. Ser.: Mater. Sci. Eng., 81(1) (2015) 012122. https://doi.org/10.1088/1757-899X/81/1/012122

Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, et al., Solid State Ionics, 412 (2024) 116596. https://doi.org/10.1016/j.ssi.2024.116596

Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, et al., Russ. J. Electrochem., 61(2) (2025) 28–39. https://doi.org/10.1134/S1023193524601670

Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, et al., Solid State Ionics, 335 (2019) 53–60. https://doi.org/10.1016/j.ssi.2019.02.012

Pikalova EYu, Guseva EM, Filonova EA, Electrochem. Mater. Technol., 2(4) (2023) 20232025. https://doi.org/10.15826/elmattech.2023.2.025

Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, et al., J. Mater. Chem. A, 9(1) (2021) 154–195. https://doi.org/10.1039/D0TA08132A

Tropin ES, Ananyev MV, Farlenkov AS, Khodimchuk AV, et al., J. Solid State Electrochem., 262 (2018) 199–213. https://doi.org/10.1016/j.jssc.2018.03.020

Yang S, Liu G, Li W, Sabolsky EM, et al., Int. J. Hydrogen Energy, 119 (2025) 235–251. https://doi.org/10.1016/j.ijhydene.2025.03.239

Sadykov V, Sadovskaya E, Eremeev N, Kolchugin A, et al., Chim. Tech. Acta, 12(3) (2025) 12304. https://doi.org/10.15826/chimtech.2025.12.3.04

Mierwaldt D, Roddatis V, Risch M, Scholz J, et al., Adv. Sustainable Syst., 1(12) (2017) 1700109. https://doi.org/10.1002/adsu.201700109

Huang F T, Xue F, Gao B, Wang LH, et al., Nat. Commun., 7 (2016) 11602. https://doi.org/10.1038/ncomms11602

Bendersky LA, Fawcett ID, Greenblatt M, Chem. Mater., 16(25) (2004) 5304–5310. https://doi.org/10.1021/cm049927e

Singh B, Ghosh S, Aich S, Roy B, J. Power Sources, 339 (2017) 103–135. https://doi.org/10.1016/j.jpowsour.2016.11.019

Iyer S, Kaur G, Haque N, Giddey S, Int. J. Hydrogen Energy, 72 (2024) 537–558. https://doi.org/10.1016/j.ijhydene.2024.05.312

Widyaiswari U, Putri GN, Risdiana, Int. J. Hydrogen Energy, 106 (2025) 444–453. https://doi.org/10.1016/j.ijhydene.2025.01.395

Sadykov V, Eremeev N, Sadovskaya E, Bespalko Yu, et al., Catal. Today, 423 (2023) 113936. https://doi.org/10.1016/j.cattod.2022.10.018

Dziembaj R, Molenda M, Chmielarz L, Catalysts, 13(8) (2023) 1165. https://doi.org/10.3390/catal13081165

Gasparetto H, Gonçalves Salau NP, Fuel, 371(B) (2024) 132140. https://doi.org/10.1016/j.fuel.2024.132140

Sochugov NS, Soloviev AA, Shipilova AV, Rabotkin SV, et al., Solid State Ionics, 213 (2013) 11–17. https://doi.org/10.1016/j.ssi.2012.11.001

Surzhikov AP, Frangulyan TS, Ghyngazov SA, Vasil’ev IP, et al., Ceram. Int., 42(12) (2016) 13888–13892. https://doi.org/10.1016/j.ceramint.2016.05.198

Surzhikov AP, Frangulyan TS, Ghyngazov SA, Vasil’ev IP, Tech. Phys. Lett., 40(9) (2014) 762–765. https://doi.org/10.1134/S1063785014090144

Sadykov V, Bespalko Yu, Sadovskaya E, Krieger T, et al., Nanomaterials, 12(19) (2022) 3282. https://doi.org/10.3390/nano12193282

Eremeev NF, Bespalko YuN, Sadovskaya EM, Skriabin PI, et al., Dalton Trans., 51(19) (2022) 7705–7714. https://doi.org/10.1039/d2dt00498d

Rode EYa, Karpov VN, Izv. Akad. Nauk SSSR Inorg. Mater., 2(4) (1966) 683–687. Russian.

Yoshimura M, Yamaguchi M, Sōmiya S, J. Ceram. Soc. JPN., 8(1068) (1984) 425–430. Japanese. https://doi.org/10.2109/jcersj1950.92.1068_425

Efremov VA, Russ. Chem. Rev., 59(7) (1990) 627–642. https://doi.org/10.1070/rc1990v059n07abeh003547

Yoshimura M, J. Am. Ceram. Soc., 60(1–2) (1977) 77–78. https://doi.org/10.1111/j.1151-2916.1977.tb16100.x

Eremeev N, Bespalko Yu, Sadovskaya E, Krieger T, et al., Chim. Tech. Acta, 12(2) (2025) 12205. https://doi.org/10.15826/chimtech.2025.12.2.05

Magrasó A, Haugsrud R, J. Mater. Chem. A, 2(32) (2014) 12630–12641. https://doi.org/10.1039/C4TA00546E

Bespalko Yu, Eremeev N, Skryabin P, Krieger T, et al., Ceram. Int., 45(7B) (2019) 9529–9536. https://doi.org/10.1016/j.ceramint.2018.09.277

Zayas-Rey MJ, dos Santos-Gómez L, Marrero-López D, León-Reina L, et al., Chem. Mater., 25(3) (2013) 448–456. https://doi.org/10.1021/cm304067d

Seeger J, Ivanova ME, Meulenberg WA, Sebold D, et al., Inorg. Chem., 52(18) (2013) 10375–10386. https://doi.org/10.1021/ic401104m

Surzhikov AP, Malyshev AV, Lysenko EN, Stary O, Eurasian Phys. Tech. J., 19(1) (2022) 5–9. https://doi.org/10.31489/2022No1/5-9

Lyakhov NZ, Boldyrev VV, Voronin AP, Gribkov OS, et al., J. Therm. Anal., 43(1) (1995) 21–31. https://doi.org/10.1007/bf02635965

Auslender VL, Bochkarev IG, Boldyrev VV, Lyakhov NZ, et al., Solid State Ionics, 101–103(1) (1997) 489–493. https://doi.org/10.1016/S0167-2738(97)84073-8

Porotnikova NM, Ananyev MV, J. Solid State Electrochem., 25(4) (2021) 1151–1159. https://doi.org/10.1007/s10008-020-04896-5

Sadykov V, Eremeev N, Sadovskaya E, Zhulanova T, et al., Chim. Tech. Acta, 11(4) (2024) 202411411. https://doi.org/10.15826/chimtech.2024.11.4.11

Geffroy P M, Deronzier E, Gillibert J, Munch P, et al., J. Electrochem. Soc., 167(6) (2020) 064503. https://doi.org/10.1149/1945-7111/ab7b84

Wachsman ED, Boyapati S, Kaufman MJ, Jiang N, J. Am. Ceram. Soc., 83(8) (2000) 1964–1968. https://doi.org/10.1111/j.1151-2916.2000.tb01498.x

Li Q, Thangadurai V, Fuel Cells, 9(5) (2009) 684–698. https://doi.org/10.1002/fuce.200900044

Erdal S, Kalland L E, Hancke R, Polfus J, et al., Int. J. Hydrogen Energy, 37(9) (2012) 8051–8055. https://doi.org/10.1016/j.ijhydene.2011.11.093

Partin GD, Korona DV, Neiman AYa, Belova KG, Russ. J. Electrochem., 51(5) (2015) 381–390. https://doi.org/10.1134/S1023193515050092

Kalland L E, Magrasó A, Mancini A, Tealdi C, et al., Chem. Mater., 25(11) (2013) 2378–2384. https://doi.org/10.1021/cm401466r

Baldin E, Lyskov N, Vorobieva G, Kolbanev I, et al., Energies, 16(15) (2023) 5637. https://doi.org/10.3390/en16155637

Zhu Y, Wang J, Rykov AI, Zhu X, et al., J. Memb. Sci., 603 (2020) 118038. https://doi.org/10.1016/j.memsci.2020.118038

Bespalko Yu, Eremeev N, Sadovskaya E, Krieger T, et al., Membranes, 13(6) (2023) 598. https://doi.org/10.3390/membranes13060598

Borhan AI, Ghercă A, Iordan AR, Palamaru MN. Classification and types of ferrites. In: Ferrite nanostructured magnetic materials. Technologies and applications. Woodhead Publishing; 2023. pp. 17–34. https://doi.org/10.1016/B978-0-12-823717-5.00026-7

Pullar RC, Prog. Mater. Sci., 57(7) (2012) 1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

Kassem MA, Waki T, Tabata Y, Nakamura H, J. Magn. Magn. Mater., 560 (2022) 169603. https://doi.org/10.1016/j.jmmm.2022.169603

Kostishyn V, Isaev I, Scherbakov S, Nalogin A, et al., East.-Eur. J. Enterp. Technol., 5(8) (2016) 32–39. https://doi.org/10.15587/1729-4061.2016.80070

Sadykov VA, Eremeev NF, Shlyakhtina AV, Pikalova EYu, Int. J. Hydrogen Energy, 94 (2024) 179–208. https://doi.org/10.1016/j.ijhydene.2024.11.072

Lu Y, Noor A, Ahmed J, Alwadie N, et al., J. Rare Earths, 43(7) (2025) 1390–1399. https://doi.org/10.1016/j.jre.2024.06.027

Stoyanovskii VO, Vedyagin AA, Volodin AM, Bespalko YuN, Ceram. Int., 46(18A) (2020) 29150–29159. https://doi.org/10.1016/j.ceramint.2020.08.088

He J, Yang Q, Song Z, Chang W, et al., Fuel, 351 (2023) 128864. https://doi.org/10.1016/j.fuel.2023.128864

Tian M, Wang XD, Zhang T, Catal. Sci. Technol., 6(7) (2016) 1984–2004. https://doi.org/10.1039/C5CY02077H

Machida M, Sato A, Kijima T, Inoue H, et al., Catal. Today, 26(3–4) (1995) 239–245. https://doi.org/10.1016/0920-5861(95)00145-3

Isaev IM, Shcherbakov SV, Kostishin VG, Nalogin AG, et al., Mater. Electron. Eng., 20(3) (2017) 220–234. Russian. https://doi.org/10.17073/1609-3577-2017-3-220-234

Kostishin VG, Trukhanov AV, Alekseev AA, Shcherbakov SV, et al., Ind. Lab. Diagn. Mater., 91(7) (2025) 30–36. https://doi.org/10.26896/1028-6861-2025-91-7-30-36

Kostishin VG, Trukhanov AV, Alekseev AA, Shcherbakov SV, et al., Phys. Solid State, 66(12) (2024) 2157–2165. https://doi.org/10.61011/PSS.2024.12.60210.333

Kostishyn VG, Trukhanov AV, Alekseev AA, Scherbakov SV, et al., Mod. Electron. Mater., 11(2) (2025) 111–123. https://doi.org/10.3897/j.moem.11.2.163141

Li B, Ge J, Zhang B, Acta Geochim., 37(1) (2018) 19–31. https://doi.org/10.1007/s11631-017-0187-x

Lee J, Ohba N, Asahi R, Chem. Mater., 32(4) (2020) 1358–1370. https://doi.org/10.1021/acs.chemmater.9b02044

Bhosale DR, Patil SI, Phys. Rev. Mater., 3(9) (2019) 095007. https://doi.org/10.1103/PhysRevMaterials.3.095007

Lee J, Ohba N, Asahi R, Sci. Rep., 9 (2019) 2593. https://doi.org/10.1038/s41598-019-39288-x

Shkerin SN, Tolkacheva AS, Naumov SV, Gyrdasova OI, et al., Electrochem. Mater. Technol., 3(4) (2024) 20243046. https://doi.org/10.15826/elmattech.2024.3.046

Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, et al., Phys. Rev. Mater., 1(1) (2017) 015001. https://doi.org/10.1103/PhysRevMaterials.1.015001

Mallmann EJJ, Sombra ASB, Goes JC, Fechine PBA, Solid State Phenom., 202 (2013) 65–96. https://doi.org/10.4028/www.scientific.net/SSP.202.65

Zhang Z, Singh K, Tsur Y, Zhou J, et al., J. Solid State Chem., 290 (2020) 121530. https://doi.org/10.1016/j.jssc.2020.121530

Yousaf M, Niaz Akhtar M, Yousaf Shah MAK, Rauf S, et al., Int. J. Hydrogen Energy, 46(15) (2021) 9996–10006. https://doi.org/10.1016/j.ijhydene.2020.01.166

Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, et al., J. Electrochem. Soc., 150(7) (2003) J33–J42. https://doi.org/10.1149/1.1574810

Kharton VV, Yaremchenko AA, Shaula AL, Viskup AP, et al., Defect Diffus. Forum, 226–228 (2004) 141–160. https://doi.org/10.4028/www.scientific.net/ddf.226-228.141

Tsagaroyannis J, Haralambous K J, Loizos Z, Petroutsos G, et al., Mater. Lett., 28(4–6) (1996) 393–400. https://doi.org/10.1016/0167-577X(96)00089-4

Kang Y, Han Y, Tian M, Huang C, et al., Appl. Catal. B: Environ., 278 (2020) 119305. https://doi.org/10.1016/j.apcatb.2020.119305

Fritsch C, Titus J, Roussière T, Lizandara-Pueyo C, et al., Chem. Ing. Tech., 94(11) (2022) 1727–1738. https://doi.org/10.1002/cite.202200072

do Carmo JVC, de Cássia F. Bezerra R, Guerra Y, Peña-Garcia R, et al., Catalysts, 12(9) (2022) 1033. https://doi.org/10.3390/catal12091033

do Carmo JVC, Pinheiro ALG, Oliveira AC, de Castro MO, et al., Ceram. Int., 47(5) (2021) 6279–6289. https://doi.org/10.1016/j.ceramint.2020.10.206

Nakamura Y, Chauhan SBS, Lim PB, Photonics, 11(10) (2024) 931. https://doi.org/10.3390/photonics11100931

Xie P, Shi Z, Feng M, Sun K, et al., Adv. Compos. Hybrid Mater., 5(2) (2022) 679–695. https://doi.org/10.1007/s42114-022-00479-2

Kostishin VG, Shakirzyanov RI, Nalogin AG, Shcherbakov SV, et al., Phys. Solid State, 63(3) (2021) 435–441. https://doi.org/10.1134/S1063783421030094

Kostishin VG, Korovushkin VV, Nalogin AG, Shcherbakov SV, et al., Phys. Solid State, 62(7) (2020) 1156–1164. https://doi.org/10.1134/S1063783420070124

Boscherini M, Storione A, Minelli M, Miccio F, et al., Energies, 16(17) (2023) 6375. https://doi.org/10.3390/en16176375

Wang P, Shi R, Zhao J, Zhang T, Adv. Sci., 11(8) (2024) 2305471. https://doi.org/10.1002/advs.202305471

Rogers JL, Mangarella MC, D’Amico AD, Gallagher JR, et al., ACS Catal., 6(9) (2016) 5873–5886. https://doi.org/10.1021/acscatal.6b01133

Meloni E, Martino M, Iervolino G, Ruocco C, et al., Energies, 15(7) (2022) 2383. https://doi.org/10.3390/en15072383

Yu J, Odriozola JA, Reina TR, Catalysts, 9(12) (2019) 1015. https://doi.org/10.3390/catal9121015

Sadykov VA, Eremeev NF, Sadovskaya EM, Chesalov YuA, et al., Top. Catal., 63(1–2) (2020) 166–177. https://doi.org/10.1007/s11244-020-01222-1

Smal EA, Simonov MN, Mezentseva NV, Krieger TA, et al., Appl. Catal. B: Environ., 283 (2021) 119656. https://doi.org/10.1016/j.apcatb.2020.119656

Singh M, Paydar S, Singh AK, Singhal R, et al., Energy Mater., 4(1) (2024) 400012. https://doi.org/10.20517/energymater.2023.54

Yadav AK, Sinha S, Kumar A, Int. J. Hydrogen Energy, 59 (2024) 1080–1093. https://doi.org/10.1016/j.ijhydene.2024.02.124

Omeiza LA, Kabyshev A, Bekmyrza K, Kuterbekov KA, et al., Mater. Sci. Energy. Technol., 8 (2025) 32–43. https://doi.org/10.1016/j.mset.2024.07.001

Alkhaldi RS, Adebunmi MA, Gondal MA, Mohamed MJS, et al., Int. J. Hydrogen Energy, 109 (2025) 81–94. https://doi.org/10.1016/j.ijhydene.2025.01.375

Qu L, Papaioannou EI, Chem. Eng. J., 496 (2024) 153791. https://doi.org/10.1016/j.cej.2024.153791

Sadykov VA, Eremeev NF, Fedorova YuE, Krasnov AV, et al., Int. J. Hydrogen Energy, 46(38) (2021) 20222–20239. https://doi.org/10.1016/j.ijhydene.2020.01.106

Tsurkan V, Krug von Nidda H A, Deisenhofer J, Lunkenheimer P, et al., Phys. Rep., 926 (2021) 1–86. https://doi.org/10.1016/j.physrep.2021.04.002

Salih SJ, Mahmood WM, Heliyon, 9(6) (2023) e16601. https://doi.org/10.1016/j.heliyon.2023.e16601

Dehghani Dastjerdi O, Shokrollahi H, Mirshekari S, Inorg. Chem. Commun., 153 (2023) 110797. https://doi.org/10.1016/j.inoche.2023.110797

Lysenko EN, Surzhikov AP, Vlasov VA, Nikolaev EV, et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 392 (2017) 1–7. https://doi.org/10.1016/j.nimb.2016.11.042

Stary O, Surzhikov AP, Malyshev AV, Lysenko EN, et al., Eurasian Phys. Tech. J., 18(3) (2021) 11–14. https://doi.org/10.31489/2021No3/11-14

Malyshev AV, Lysenko EN, Sheveleva EA, Surzhikova OA, et al., Eurasian Phys. Tech. J., 18(1) (2021) 3–8. https://doi.org/10.31489/2021No1/3-8

Surzhikov AP, Lysenko EN, Malyshev AV, Petrova A, et al., Eurasian Phys. Tech. J., 17(1) (2020) 26–34. https://doi.org/10.31489/2020No1/26-34

Stary O, Malyshev AV, Lysenko EN, Petrova A, Eurasian Phys. Tech. J., 17(2) (2020) 6–10. https://doi.org/10.31489/2020No2/6-10

Lysenko EN, Nikolaev EV, Vlasov VA, Svirkov AS, et al., Ceram. Int., 50(24A) (2024) 52632–52639. https://doi.org/10.1016/j.ceramint.2024.10.114

Kostishin VG, Andreev VG, Panina LV, Chitanov DN, et al., Inorg. Mater., 50(11) (2014) 1174–1178. https://doi.org/10.1134/S0020168514110077

Kostishin VG, Korovushkin VV, Panina LV, Andreev VG, et al., Inorg. Mater., 50(12) (2014) 1252–1256. https://doi.org/10.1134/S0020168514120115

Andreev VG, Kostishyn VG, Chitanov DN, Nikolaev AN, et al., The influence of basic chemical composition on the properties nickel-zinc ferrites, received by radiothermic sintering. Inž. Vestn. Dona [Internet] 3 2013 [cited 2025]. Russian. Available from: http://www.ivdon.ru/en/magazine/archive/n3y2013/1873, Accessed on 04 September 2025.

Kostishin VG, Komlev AS, Korobeynikov MV, Bryazgin AA, et al., Tavricheskii Nauchnyi Obozrevatel’, 4–3 (2015) 85–90. Russian.

Sadykov VA, Usoltsev VV, Fedorova YuE, Sobyanin VA, et al., Russ. J. Electrochem., 47(4) (2011) 488–493. https://doi.org/10.1134/S1023193511040148

Sadykov V, Mezentseva N, Usoltsev V, Sadovskaya E, et al., J. Power Sources, 196(17) (2011) 7104–7109. https://doi.org/10.1016/j.jpowsour.2010.07.096

Sadykov V, Usoltsev V, Yeremeev N, Mezentseva N, et al., J. Eur. Ceram. Soc., 33(12) (2013) 2241–2250. https://doi.org/10.1016/j.jeurceramsoc.2013.01.007

Sadykov VA, Mezentseva NV, Usoltsev VV, Kharlamova TS, et al., In: Fuel cell performance. New York: Nova Science Publishers, Inc.; 2012. pp. 143–210.

Sadykov VA, Pavlova SN, Kharlamova TS, Muzykantov VS, et al., In: Perovskites: Structure, properties and uses. New York: Nova Science Publishers, Inc.; 2010, pp. 67–178.

Gusev AA, Mikhailenko MA, Chem. Sustain. Dev., 32(5) (2024) 581–587. https://doi.org/10.15372/CSD2024592

Alem SAA, Latifi R, Angizi S, Hassanaghaei F, et al., Mater. Manuf. Process., 35(3) (2020) 303–327. https://doi.org/10.1080/10426914.2020.1718698

Kapoor AS. Microwave sintering of SOFC materials [dissertation]. Raleigh (USA): North Carolina State University; 2008. 62 p.

Rybakov KI, Egorov SV, Eremeev AG, Kholoptsev VV, et al, J. Mater. Res., 34(15) (2019) 2620-34. https://doi.org/10.1557/jmr.2019.232

Annenkov YuM, Ivashutenko AS, Bull. Tomsk Polytech. Univ., 308(7) (2005) 30–35. Russian.

Sutton WH, Am. Ceram. Soc. Bull., 68(2) (1989) 376–386.

Booske JH, Cooper RF, In: Willert-Porada M, editor. Advances in microwave and radio frequency processing. Berlin, Heidelberg: Springer; 2006. pp. 461–71. https://doi.org/10.1007/978-3-540-32944-2_49

Sing SL, Yeong WY, Wiria FE, Tay BY, et al., Rapid Prototyp. J., 23(3) (2017) 611–623. https://doi.org/10.1108/RPJ-11-2015-0178

Sharif A, Farid N, O'Connor GM, Results Eng., 16 (2022) 100731. https://doi.org/10.1016/j.rineng.2022.100731

Qian B, Shen Z, J. Asian Ceram. Soc., 1(4) (2013) 315–321. https://doi.org/10.1016/j.jascer.2013.08.004

Bhandari S, Vajpayee G, Lemos da Silva L, Hinterstein M, et al., Mater. Sci. Eng.: R: Rep., 162 (2025) 100877. https://doi.org/10.1016/j.mser.2024.100877

Atkinson HV, Davies S, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 31(12) (2000) 2981–3000. https://doi.org/10.1007/s11661-000-0078-2

Laptev AM, Bram M, Garbiec D, Räthel J, et al., Adv. Eng. Mater., 26(5) (2024) 2301391. https://doi.org/10.1002/adem.202301391

Ratzker B, Sokol M, Mater. Des., 233 (2023) 112238. https://doi.org/10.1016/j.matdes.2023.112238

Le Godec Y, Le Floch S, Materials, 16(3) (2023) 997. https://doi.org/10.3390/ma16030997

Nisar A, Zhang C, Boesl B, Agarwal A, Ceramics, 4(1) (2021) 20–39. https://doi.org/10.3390/ceramics4010003




DOI: https://doi.org/10.15826/elmattech.2025.4.062

Copyright (c) 2025 Nikita F. Eremeev, Yulia N. Bespalko, Mikhail A. Mikhailenko, Mikhail V. Korobeynikov, Vladislav A. Sadykov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.