Radiation-thermal sintering of oxide and composite materials for hydrogen energy by electron beam: A review
Abstract
Keywords
Full Text:
PDFReferences
Phogat P, Chand B, Shreya, Jha R, et al., Int. J. Hydrogen Energy, 109 (2025) 465–485. https://doi.org/10.1016/j.ijhydene.2025.02.133
Li J, Cai Q, Horri BA, Mater. Adv., 6(1) (2025) 39–83. https://doi.org/10.1039/D4MA00690A
Fan L, Luo W, Fan Q, Hu Q, et al., Chem. Sci., 16(16) (2025) 6620–6687. https://doi.org/10.1039/D4SC08300H
Kudapa VK, Paliyal PS, Mondal A, Mondal S, Fusion Sci. Technol., 80(7) (2024) 803–825. https://doi.org/10.1080/15361055.2023.2290898
Singh R, Prasad B, Ahn Y H, Gas Sci. Eng., 123 (2024) 205256. https://doi.org/10.1016/j.jgsce.2024.205256
Sanni SE, Oni BA, Okoro EE, Korean J. Chem. Eng., 41(4) (2024) 965–699. https://doi.org/10.1007/s11814-024-00092-7
Awad MM, Hussain I, Mustapha U, Ahmed Taialla O, et al., Int. J. Hydrogen Energy, 76 (2024) 202–233. https://doi.org/10.1016/j.ijhydene.2024.03.319
Gavalda-Diaz O, Saiz E, Chevalier J, Bouville F, Int. Mater. Rev., 70(1) (2025) 3–30. https://doi.org/10.1177/09506608241308337
Sun H, Zou B, Wang X, Chen W, et al., Mater. Chem. Phys., 319 (2024) 129337. https://doi.org/10.1016/j.matchemphys.2024.129337
Pasagada VKV, Yang N, Xu C, Ceram. Int., 48(7) (2022) 10174–10186. https://doi.org/10.1016/j.ceramint.2021.12.229
German RM, Suri P, Park SJ, J. Mater. Sci., 44(1) (2009) 1–39. https://doi.org/10.1007/s10853-008-3008-0
Milisavljevic I, Zhang M, Jiang Q, Liu Q, et al., J. Materiomics, 11(2) (2025) 100872. https://doi.org/10.1016/j.jmat.2024.04.002
Wakai F, Okuma G, Nishiyama N, Mater. Today: Proc., 16(1) (2019) 4–13. https://doi.org/10.1016/j.matpr.2019.05.304
Dunyushkina L, Electrochem. Mater. Technol., 3(3) (2024) 20243040. https://doi.org/10.15826/elmattech.2024.3.040
Gorelov V, Electrochem. Mater. Technol., 3(3) (2024) 20243041. https://doi.org/10.15826/elmattech.2024.3.041
Sındıraç C, Çakırlar S, Büyükaksoy A, Akkurt S, J. Eur. Ceram. Soc., 39(2–3) (2019) 409–417. https://doi.org/10.1016/j.jeurceramsoc.2018.09.029
Bigeard A, Girard L, Boller E, Trillaud V, et al., Materialia, 39 (2025) 102269. https://doi.org/10.1016/j.mtla.2024.102269
Toor SY, Croiset E, Ceram. Int., 46(1) (2020) 1148–1157. https://doi.org/10.1016/j.ceramint.2019.09.083
Shlyakhtina AV, Savvin SN, Lyskov NV, Kolbanev IV, et al, J. Mater. Chem. A, 5(16) (2017) 7618–7630. https://doi.org/10.1039/C6TA09963G
Yu M, Feng Q, Liu Z, Zhang P, et al., Crystals, 14(3) (2024) 225. https://doi.org/10.3390/cryst14030225
Aman B, Acharya S, Reeja-Jayan B, Adv. Eng. Mater., 26(9) (2024) 2302065. https://doi.org/10.1002/adem.202302065
Lv Z, Lu M, Xiao G, Ma Y, et al., J. Am. Ceram. Soc., 108(2) (2025) e20196. https://doi.org/10.1111/jace.20196
Gan L, Park Y J, Zhu L L, Go S I, et al., Ceram. Int., 42(12) (2016) 13952–13959. https://doi.org/10.1016/j.ceramint.2016.05.208
Gonzalez-Martinez IG, Bachmatiuk A, Bezugly V, Kunstmann J, et al., Nanoscale, 8(22) (2016) 11340–11362. https://doi.org/10.1039/c6nr01941b
Milberg J, Sigl M, Prod. Eng. Res. Devel., 2(2) (2008) 117–122. https://doi.org/10.1007/s11740-008-0088-2
Zhou L, Miller J, Vezza J, Mayster M, et al., Sensors, 24(9) (2024) 2668. https://doi.org/10.3390/s24092668
Tokita M, Ceramics, 4(2) (2021) 160–198. https://doi.org/10.3390/ceramics4020014
Pavlov YuS, Petrenko VV, Alekseev PA, Bystrov PA, et al., Radiat. Phys. Chem., 198 (2022) 110199. https://doi.org/10.1016/j.radphyschem.2022.110199
Klimov AS, Bakeev IYu, Dvilis ES, Oks EM, et al., Vacuum, 169 (2019) 108933. https://doi.org/10.1016/j.vacuum.2019.108933
Annenkov YuM, Russ. Phys. J., 39(11) (1996) 1146–1159. https://doi.org/10.1007/BF02436157
Klimov AS, Zenin AA, Oks EM, Khasanov OL, et al., Electrotechnica & Electronica (E+E), 49(5–6) (2014) 315–318.
Huang S, Yue C, Uvdal K, Hu Z, Nanoscale Adv., 7(2) (2025) 384–418. https://doi.org/10.1039/D4NA00806E
Kotel’nikov IA. Lektsii po fizike plazmy. Tom 1: Osnovy fiziki plazmy [Lectures on plasma physics. Volume 1: Fundamentals of plasma physics]. Saint-Petersburg: Lan’; 2021. 400 p. Russian.
Pikaev AK. Sovremennaya radiatsionnaya khimiya, Tom 1, Osnovnyye polozheniya, experimental’naya tekhnika i metody [Modern radiation chemistry, Volume 1, Basics, experimental techniques and methods]. Moscow: Nauka; 1985. 376 p. Russian.
Pikaev AK. Sovremennaya radiatsionnaya khimiya, Tom 3, Tvyordoye telo i polimery. Prikladnyye aspekty [Modern radiation chemistry, Volume 3, Solid state and polymers. Applied Aspects]. Nauka, Moscow; 1987. 448 p. Russian.
Stepanov VA, Tech. Phys., 43(8) (1998) 938–942. https://doi.org/10.1134/1.1259104
Zäh MF, Lutzmann S, Prod. Eng. Res. Devel., 4 (2010) 15–23. https://doi.org/10.1007/s11740-009-0197-6
Klimov AS, Bakeev IYu, Oks EM, Tran VT, et al., J. Phys. Conf. Ser., 1488(1) (2020) 012010. https://doi.org/10.1088/1742-6596/1488/1/012010
Klimov AS, Bakeev IYu, Oks EM, Zenin AA, Ceram. Int., 46(14) (2020) 22276–22281. https://doi.org/10.1016/j.ceramint.2020.05.306
Ancharova UV, Mikhailenko MA, Tolochko BP, Lyakhov NZ, et al., IOP Conf. Ser.: Mater. Sci. Eng., 110(1) (2016) 012110. https://doi.org/10.1088/1757-899X/110/1/012110
Sadykov V, Usoltsev V, Fedorova Yu, Mezentseva N, et al., In: Sintering of ceramics – New emerging techniques. Vienna: InTech; 2012. pp. 121–140. https://doi.org/10.5772/34958
Xiong G, Jia J, Zhao L, Liu X, et al., Sci. Bull., 66(4) (2021) 386–406. https://doi.org/10.1016/j.scib.2020.08.037
Sigl M, Lutzmann S, Zaeh MF, In: Proceedings for the 2006 International Solid Freeform Fabrication Symposium; 2006 Aug 14–16; Austin, TX, USA. pp. 464–477. https://doi.org/10.26153/tsw/7154
Zaeh MF, Kahnert M, Prod. Eng. Res. Devel., 3(3) (2009) 217–224. https://doi.org/10.1007/s11740-009-0157-1
Sadykov VA, Mezentseva NV, Bobrova LN, Smorygo OL, et al., In: Advanced nanomaterials for catalysis and energy. Synthesis, characterization and applications. Elsevier; 2019. pp. 435–514. https://doi.org/10.1016/B978-0-12-814807-5.00012-7
Kahnert M, Lutzmann S, Zaeh MF, In: Proceedings for the 2007 International Solid Freeform Fabrication Symposium; 2007 Aug 6–8; Austin, TX, USA. pp. 88–99. https://doi.org/10.26153/tsw/7196
Burdovitsin V, Dvilis ES, Zenin A, Klimov A, et al., Adv. Mater. Res., 872 (2013) 150–156. https://doi.org/10.4028/www.scientific.net/AMR.872.150
Solodkyi I, Bogomol I, Loboda P, Int. J. Refract. Met. Hard. Mater., 102 (2022) 105730. https://doi.org/10.1016/j.ijrmhm.2021.105730
Körner C, Attar E, Heinl P, J. Mater. Process. Technol., 211(6) (2011) 978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016
Zenin AA, Bakeev IYu, Dolgova AV, Klimov AS, et al., Tech. Phys., 69(5) (2024) 1472–1478. https://doi.org/10.1134/S1063784224040509
Klimov AS, Bakeev IYu, Zenin AA, IOP Conf. Ser.: Mater. Sci. Eng., 597(1) (2019) 012070. https://doi.org/10.1088/1757-899X/597/1/012070
Jia Y, Mehta ST, Li R, Rahman Chowdhury MA, et al., Ceram. Int., 47(2) (2021) 2397–2405. https://doi.org/10.1016/j.ceramint.2020.09.082
Komlev AS, Tavricheskii Nauchnyi Obozrevatel’, 12(1) (2016) 139–141. Russian.
Charlesby A. Atomic radiation and polymers. Oxford, London, New York, Paris: Pergamon Press; 1960. 570 p. https://doi.org/10.1016/C2013-0-07861-9
Henley EJ, Johnson ER. The chemistry and physics of high energy reactions. Washington, DC: University Press; 1969. 475 p.
Kroc TK, Radiat. Phys. Chem., 204 (2023) 110702. https://doi.org/10.1016/j.radphyschem.2022.110702
Volmer F, Seidler I, Bisswanger T, Tu J S, et al., J. Phys. D: Appl. Phys., 54(22) (2021) 225304. https://doi.org/10.1088/1361-6463/abe89b
Egerton RF, McLeod R, Wang F, Malac M, Ultramicroscopy, 110(8) (2010) 991–997. https://doi.org/10.1016/j.ultramic.2009.11.003
Xue H, Zhang M, Liu J, Wang J, et al., Front. Chem., 10 (2022) 889203. https://doi.org/10.3389/fchem.2022.889203
Haug E, Nakel W. The elementary process of bremsstrahlung. World Scientific; 2004. 272 p. https://doi.org/10.1142/5371
Walker II RC, Shi T, Silva EC, Jovanovic I, et al., Phys. Status Solidi A, 213(12) (2016) 3065–3077. https://doi.org/10.1002/pssa.201600395
Natelauri E, Pkhaladze M, Atskvereli M, In: Proton therapy. Scientific questions and future direction. London: IntechOpen; 2024. pp. 28–48. https://doi.org/10.5772/intechopen.1003188
Nesheva D, ACS Omega, 8(14) (2023) 12603–12612. https://doi.org/10.1021/acsomega.3c00486
Kinchin GH, Pease RS, Rep. Prog. Phys., 18(1) (1955) 1–51. https://doi.org/10.1088/0034-4885/18/1/301
Klinger MI, Lushchik ChB, Mashovets TV, Kholodar’ GA, et al., Sov. Phys. Usp., 28(11) (1985) 994–1014. https://doi.org/10.1070/PU1985v028n11ABEH003977
Oksengendler BL, Ashirmetov AKh, Iskandarova FA, Zatsepin AF, et al., J. Surf. Invest. X-ray Synchrotron Neutron Tech., 17(1) (2023) 31–42. https://doi.org/10.1134/S1027451023010196
Ovchinnikov VV, Makarov EV, Semionkin VA, Gushchina NV, Vacuum, 201 (2022) 111040. https://doi.org/10.1016/j.vacuum.2022.111040
Ong CK, J. Phys. C: Solid State Phys., 16(21) (1983) 4081–4085. https://doi.org/10.1088/0022-3719/16/21/008
Modine FA, Chen Y, Major RW, Wilson TM, Phys. Review B, 14(4) (1976) 1739–1750. https://doi.org/10.1103/physrevb.14.1739
Serpone N, J. Phys. Chem. B, 110(48) (2006) 24287–24293. https://doi.org/10.1021/jp065659r
Bartram RH, Swenberg CE, Fournier JT, Phys. Rev., 139(3A) (1965) A941–A951. https://doi.org/10.1103/physrev.139.a941
Chen Y, Abraham MM, J. Phys. Chem. Solids, 51(7) (1990) 747–764. https://doi.org/10.1016/0022-3697(90)90147-8
Dolgov SA, Kärner T, Lushchik A, Maaroos A, et al., Phys. Solid State, 53(6) (2011) 1244–1252. https://doi.org/10.1134/S1063783411060084
Knotek ML, Feibelman PJ, Surf. Sci., 90(1) (1979) 78–90. https://doi.org/10.1016/0039-6028(79)90011-6
Knotek ML, Feibelman PJ, Phys. Rev. Lett., 40(14) (1978) 964–967. https://doi.org/10.1103/PhysRevLett.40.964
Niehus H, Losch W, Surf. Sci., 111(2) (1981) 344–350. https://doi.org/10.1016/0039-6028(80)90713-X
Buckett MI, Strane J, Luzzi DE, Zhang JP, et al., Ultramicroscopy, 29(1–4) (1989) 217–227. https://doi.org/10.1016/0304-3991(89)90249-0
Sun J, Li M, Liu H, Guo L, et al., Micron, 190 (2025) 103786. https://doi.org/10.1016/j.micron.2025.103786
Sokolović I, Guedes EB, van Waas TP, Guo F, et al., Nat. Commun., 16 (2025) 4594. https://doi.org/10.1038/s41467-025-59258-4
Cao K, Zhao Q, Liao J, Yan F, et al, Microstructures, 5(2) (2025) 2025025. https://doi.org/10.20517/microstructures.2024.120
Kitta M, Tada K, ACS Appl. Energy Mater., 4(2) (2021) 1377–1386. https://doi.org/10.1021/acsaem.0c02617
Alex C, Shukla G, John NS, Electrochim. Acta, 385 (2021) 138425. https://doi.org/10.1016/j.electacta.2021.138425
Buckett MI, Marks LD, Mat. Res. Soc. Symp. Proc., 235(1) (1992) 339–344. https://doi.org/10.1557/PROC-235-339
Qin W, Szpunar JA, Umakoshi Y,Acta Mater., 59(5) (2011) 2221–2228. https://doi.org/10.1016/j.actamat.2010.12.025
Zhang Y, Wang Y, Wu Y, Shu X, et al., Nat. Commun., 14 (2023) 4012. https://doi.org/10.1038/s41467-023-39812-8
Seo JH, Na S, Ahn SJ, Park K, et al., J. Phys. Chem. C, 128(22) (2024) 9099–9104. https://doi.org/10.1021/acs.jpcc.4c00600
Parajuli P, Kwon BJ, Key B, Cabana J, et al., Microsc. Microanal., 26(S2) (2020) 788–790. https://doi.org/10.1017/S1431927620015846
Rao SK, Rajesh Kumar R, Ahmed SSSJ, Al-Mazroua HA, et al., Mater. Today Commun., 43 (2025) 111540. https://doi.org/10.1016/j.mtcomm.2025.111540
Tsukuma K, Yamashita I, Kusunose T, J. Am. Ceram. Soc., 91(3) (2008) 813–818. https://doi.org/10.1111/j.1551-2916.2007.02202.x
Jiang N, Micron, 171 (2023) 103482. https://doi.org/10.1016/j.micron.2023.103482
Węglowski MSt, Błacha S, Phillips A, Vacuum, 130 (2016) 72–92. https://doi.org/10.1016/j.vacuum.2016.05.004
Landau E, Tiferet E, Ganor YI, Ganeriwala RK, et al, Addit. Manuf., 36 (2020) 101535. https://doi.org/10.1016/j.addma.2020.101535
Atas MS, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 548 (2024) 165252. https://doi.org/10.1016/j.nimb.2024.165252
Jiang N, Rep. Prog. Phys., 79(1) (2015) 016501. https://doi.org/10.1088/0034-4885/79/1/016501
Susi T, Meyer JC, Kotakoski J, Nat. Rev. Phys., 1 (2019) 397–405. https://doi.org/10.1038/s42254-019-0058-y
Jiang N, Micron, 83 (2016) 79–92. https://doi.org/10.1016/j.micron.2016.02.007
Kim H M, Lee M H, Kim K B, Nanotechnology, 22(27) (2011) 275303. https://doi.org/10.1088/0957-4484/22/27/275303
Wang YC, Wang DC, Int. J. Autom. Smart Technol., 4(3) (2014) 157–162. https://doi.org/10.5875/ausmt.v4i3.556
Kim H M, Park K B, Kim J J, Chae H, et al., Nano Converg., 5 (2018) 32. https://doi.org/10.1186/s40580-018-0164-z
Medvedev DA, Int. J. Hydrogen Energy, 161 (2025) 150689. https://doi.org/10.1016/j.ijhydene.2025.150689
Khokhlova MO, Shubnikova EV, Tropin ES, Lyskov NV, et al., Int. J. Hydrogen Energy, 86 (2024) 960–967. https://doi.org/10.1016/j.ijhydene.2024.08.490
Fouad M, Guskov R, Kovalev I, Tropin E, et al., Ceram. Int., 50(21C) (2024) 43522–43529. https://doi.org/10.1016/j.ceramint.2024.08.203
Fan K, Yu M, Lei J, Mu S, Crystals, 14(7) (2024) 623. https://doi.org/10.3390/cryst14070623
Kudapa VK, Mondal S, Boca Raton: CRC Press; 2025. 168 p. https://doi.org/10.1201/9781003590682
Bragina OA, Shubnikova EV, Arapova MV, Nemudry AP, J. Eur. Ceram. Soc., 44(14) (2024) 116684. https://doi.org/10.1016/j.jeurceramsoc.2024.116684
Salehabadi A, Perry J, Zanganeh J, Moghtaderi B, Int. J. Hydrogen Energy, 106 (2025) 243–260. https://doi.org/10.1016/j.ijhydene.2025.01.283
Mi J, Chen J, Chen X, Liu X, et al., Chem. Eur. J., 29(8) (2023) e202202713. https://doi.org/10.1002/chem.202202713
Li H, Yu J, Gong Y, Lin N, et al., Sep. Purif. Technol., 307 (2023) 122716. https://doi.org/10.1016/j.seppur.2022.122716
Eremeev NF, Hanna SA, Sadykov VA, Bespalko YuN, Sustain. Energy Fuels, 9(17) (2025) 4554–4587. https://doi.org/10.1039/D5SE00359H
Sadykov V, Eremeev N, Alikina G, Sadovskaya E, et al., Solid State Ionics, 262 (2014) 707–712. https://doi.org/10.1016/j.ssi.2014.01.020
Sadykov V, Eremeev N, Sadovskaya E, Bobin A, et al., Solid State Ionics, 273 (2015) 35–40. https://doi.org/10.1016/j.ssi.2014.11.021
Ancharova UV, Mikhailenko MA, Tolochko BP, Lyakhov NZ, et al., IOP Conf. Ser.: Mater. Sci. Eng., 81(1) (2015) 012122. https://doi.org/10.1088/1757-899X/81/1/012122
Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, et al., Solid State Ionics, 412 (2024) 116596. https://doi.org/10.1016/j.ssi.2024.116596
Sadykov VA, Sadovskaya EM, Bespalko YuN, Smal’ EA, et al., Russ. J. Electrochem., 61(2) (2025) 28–39. https://doi.org/10.1134/S1023193524601670
Pikalova EYu, Sadykov VA, Filonova EA, Eremeev NF, et al., Solid State Ionics, 335 (2019) 53–60. https://doi.org/10.1016/j.ssi.2019.02.012
Pikalova EYu, Guseva EM, Filonova EA, Electrochem. Mater. Technol., 2(4) (2023) 20232025. https://doi.org/10.15826/elmattech.2023.2.025
Tarutin AP, Lyagaeva JG, Medvedev DA, Bi L, et al., J. Mater. Chem. A, 9(1) (2021) 154–195. https://doi.org/10.1039/D0TA08132A
Tropin ES, Ananyev MV, Farlenkov AS, Khodimchuk AV, et al., J. Solid State Electrochem., 262 (2018) 199–213. https://doi.org/10.1016/j.jssc.2018.03.020
Yang S, Liu G, Li W, Sabolsky EM, et al., Int. J. Hydrogen Energy, 119 (2025) 235–251. https://doi.org/10.1016/j.ijhydene.2025.03.239
Sadykov V, Sadovskaya E, Eremeev N, Kolchugin A, et al., Chim. Tech. Acta, 12(3) (2025) 12304. https://doi.org/10.15826/chimtech.2025.12.3.04
Mierwaldt D, Roddatis V, Risch M, Scholz J, et al., Adv. Sustainable Syst., 1(12) (2017) 1700109. https://doi.org/10.1002/adsu.201700109
Huang F T, Xue F, Gao B, Wang LH, et al., Nat. Commun., 7 (2016) 11602. https://doi.org/10.1038/ncomms11602
Bendersky LA, Fawcett ID, Greenblatt M, Chem. Mater., 16(25) (2004) 5304–5310. https://doi.org/10.1021/cm049927e
Singh B, Ghosh S, Aich S, Roy B, J. Power Sources, 339 (2017) 103–135. https://doi.org/10.1016/j.jpowsour.2016.11.019
Iyer S, Kaur G, Haque N, Giddey S, Int. J. Hydrogen Energy, 72 (2024) 537–558. https://doi.org/10.1016/j.ijhydene.2024.05.312
Widyaiswari U, Putri GN, Risdiana, Int. J. Hydrogen Energy, 106 (2025) 444–453. https://doi.org/10.1016/j.ijhydene.2025.01.395
Sadykov V, Eremeev N, Sadovskaya E, Bespalko Yu, et al., Catal. Today, 423 (2023) 113936. https://doi.org/10.1016/j.cattod.2022.10.018
Dziembaj R, Molenda M, Chmielarz L, Catalysts, 13(8) (2023) 1165. https://doi.org/10.3390/catal13081165
Gasparetto H, Gonçalves Salau NP, Fuel, 371(B) (2024) 132140. https://doi.org/10.1016/j.fuel.2024.132140
Sochugov NS, Soloviev AA, Shipilova AV, Rabotkin SV, et al., Solid State Ionics, 213 (2013) 11–17. https://doi.org/10.1016/j.ssi.2012.11.001
Surzhikov AP, Frangulyan TS, Ghyngazov SA, Vasil’ev IP, et al., Ceram. Int., 42(12) (2016) 13888–13892. https://doi.org/10.1016/j.ceramint.2016.05.198
Surzhikov AP, Frangulyan TS, Ghyngazov SA, Vasil’ev IP, Tech. Phys. Lett., 40(9) (2014) 762–765. https://doi.org/10.1134/S1063785014090144
Sadykov V, Bespalko Yu, Sadovskaya E, Krieger T, et al., Nanomaterials, 12(19) (2022) 3282. https://doi.org/10.3390/nano12193282
Eremeev NF, Bespalko YuN, Sadovskaya EM, Skriabin PI, et al., Dalton Trans., 51(19) (2022) 7705–7714. https://doi.org/10.1039/d2dt00498d
Rode EYa, Karpov VN, Izv. Akad. Nauk SSSR Inorg. Mater., 2(4) (1966) 683–687. Russian.
Yoshimura M, Yamaguchi M, Sōmiya S, J. Ceram. Soc. JPN., 8(1068) (1984) 425–430. Japanese. https://doi.org/10.2109/jcersj1950.92.1068_425
Efremov VA, Russ. Chem. Rev., 59(7) (1990) 627–642. https://doi.org/10.1070/rc1990v059n07abeh003547
Yoshimura M, J. Am. Ceram. Soc., 60(1–2) (1977) 77–78. https://doi.org/10.1111/j.1151-2916.1977.tb16100.x
Eremeev N, Bespalko Yu, Sadovskaya E, Krieger T, et al., Chim. Tech. Acta, 12(2) (2025) 12205. https://doi.org/10.15826/chimtech.2025.12.2.05
Magrasó A, Haugsrud R, J. Mater. Chem. A, 2(32) (2014) 12630–12641. https://doi.org/10.1039/C4TA00546E
Bespalko Yu, Eremeev N, Skryabin P, Krieger T, et al., Ceram. Int., 45(7B) (2019) 9529–9536. https://doi.org/10.1016/j.ceramint.2018.09.277
Zayas-Rey MJ, dos Santos-Gómez L, Marrero-López D, León-Reina L, et al., Chem. Mater., 25(3) (2013) 448–456. https://doi.org/10.1021/cm304067d
Seeger J, Ivanova ME, Meulenberg WA, Sebold D, et al., Inorg. Chem., 52(18) (2013) 10375–10386. https://doi.org/10.1021/ic401104m
Surzhikov AP, Malyshev AV, Lysenko EN, Stary O, Eurasian Phys. Tech. J., 19(1) (2022) 5–9. https://doi.org/10.31489/2022No1/5-9
Lyakhov NZ, Boldyrev VV, Voronin AP, Gribkov OS, et al., J. Therm. Anal., 43(1) (1995) 21–31. https://doi.org/10.1007/bf02635965
Auslender VL, Bochkarev IG, Boldyrev VV, Lyakhov NZ, et al., Solid State Ionics, 101–103(1) (1997) 489–493. https://doi.org/10.1016/S0167-2738(97)84073-8
Porotnikova NM, Ananyev MV, J. Solid State Electrochem., 25(4) (2021) 1151–1159. https://doi.org/10.1007/s10008-020-04896-5
Sadykov V, Eremeev N, Sadovskaya E, Zhulanova T, et al., Chim. Tech. Acta, 11(4) (2024) 202411411. https://doi.org/10.15826/chimtech.2024.11.4.11
Geffroy P M, Deronzier E, Gillibert J, Munch P, et al., J. Electrochem. Soc., 167(6) (2020) 064503. https://doi.org/10.1149/1945-7111/ab7b84
Wachsman ED, Boyapati S, Kaufman MJ, Jiang N, J. Am. Ceram. Soc., 83(8) (2000) 1964–1968. https://doi.org/10.1111/j.1151-2916.2000.tb01498.x
Li Q, Thangadurai V, Fuel Cells, 9(5) (2009) 684–698. https://doi.org/10.1002/fuce.200900044
Erdal S, Kalland L E, Hancke R, Polfus J, et al., Int. J. Hydrogen Energy, 37(9) (2012) 8051–8055. https://doi.org/10.1016/j.ijhydene.2011.11.093
Partin GD, Korona DV, Neiman AYa, Belova KG, Russ. J. Electrochem., 51(5) (2015) 381–390. https://doi.org/10.1134/S1023193515050092
Kalland L E, Magrasó A, Mancini A, Tealdi C, et al., Chem. Mater., 25(11) (2013) 2378–2384. https://doi.org/10.1021/cm401466r
Baldin E, Lyskov N, Vorobieva G, Kolbanev I, et al., Energies, 16(15) (2023) 5637. https://doi.org/10.3390/en16155637
Zhu Y, Wang J, Rykov AI, Zhu X, et al., J. Memb. Sci., 603 (2020) 118038. https://doi.org/10.1016/j.memsci.2020.118038
Bespalko Yu, Eremeev N, Sadovskaya E, Krieger T, et al., Membranes, 13(6) (2023) 598. https://doi.org/10.3390/membranes13060598
Borhan AI, Ghercă A, Iordan AR, Palamaru MN. Classification and types of ferrites. In: Ferrite nanostructured magnetic materials. Technologies and applications. Woodhead Publishing; 2023. pp. 17–34. https://doi.org/10.1016/B978-0-12-823717-5.00026-7
Pullar RC, Prog. Mater. Sci., 57(7) (2012) 1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
Kassem MA, Waki T, Tabata Y, Nakamura H, J. Magn. Magn. Mater., 560 (2022) 169603. https://doi.org/10.1016/j.jmmm.2022.169603
Kostishyn V, Isaev I, Scherbakov S, Nalogin A, et al., East.-Eur. J. Enterp. Technol., 5(8) (2016) 32–39. https://doi.org/10.15587/1729-4061.2016.80070
Sadykov VA, Eremeev NF, Shlyakhtina AV, Pikalova EYu, Int. J. Hydrogen Energy, 94 (2024) 179–208. https://doi.org/10.1016/j.ijhydene.2024.11.072
Lu Y, Noor A, Ahmed J, Alwadie N, et al., J. Rare Earths, 43(7) (2025) 1390–1399. https://doi.org/10.1016/j.jre.2024.06.027
Stoyanovskii VO, Vedyagin AA, Volodin AM, Bespalko YuN, Ceram. Int., 46(18A) (2020) 29150–29159. https://doi.org/10.1016/j.ceramint.2020.08.088
He J, Yang Q, Song Z, Chang W, et al., Fuel, 351 (2023) 128864. https://doi.org/10.1016/j.fuel.2023.128864
Tian M, Wang XD, Zhang T, Catal. Sci. Technol., 6(7) (2016) 1984–2004. https://doi.org/10.1039/C5CY02077H
Machida M, Sato A, Kijima T, Inoue H, et al., Catal. Today, 26(3–4) (1995) 239–245. https://doi.org/10.1016/0920-5861(95)00145-3
Isaev IM, Shcherbakov SV, Kostishin VG, Nalogin AG, et al., Mater. Electron. Eng., 20(3) (2017) 220–234. Russian. https://doi.org/10.17073/1609-3577-2017-3-220-234
Kostishin VG, Trukhanov AV, Alekseev AA, Shcherbakov SV, et al., Ind. Lab. Diagn. Mater., 91(7) (2025) 30–36. https://doi.org/10.26896/1028-6861-2025-91-7-30-36
Kostishin VG, Trukhanov AV, Alekseev AA, Shcherbakov SV, et al., Phys. Solid State, 66(12) (2024) 2157–2165. https://doi.org/10.61011/PSS.2024.12.60210.333
Kostishyn VG, Trukhanov AV, Alekseev AA, Scherbakov SV, et al., Mod. Electron. Mater., 11(2) (2025) 111–123. https://doi.org/10.3897/j.moem.11.2.163141
Li B, Ge J, Zhang B, Acta Geochim., 37(1) (2018) 19–31. https://doi.org/10.1007/s11631-017-0187-x
Lee J, Ohba N, Asahi R, Chem. Mater., 32(4) (2020) 1358–1370. https://doi.org/10.1021/acs.chemmater.9b02044
Bhosale DR, Patil SI, Phys. Rev. Mater., 3(9) (2019) 095007. https://doi.org/10.1103/PhysRevMaterials.3.095007
Lee J, Ohba N, Asahi R, Sci. Rep., 9 (2019) 2593. https://doi.org/10.1038/s41598-019-39288-x
Shkerin SN, Tolkacheva AS, Naumov SV, Gyrdasova OI, et al., Electrochem. Mater. Technol., 3(4) (2024) 20243046. https://doi.org/10.15826/elmattech.2024.3.046
Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, et al., Phys. Rev. Mater., 1(1) (2017) 015001. https://doi.org/10.1103/PhysRevMaterials.1.015001
Mallmann EJJ, Sombra ASB, Goes JC, Fechine PBA, Solid State Phenom., 202 (2013) 65–96. https://doi.org/10.4028/www.scientific.net/SSP.202.65
Zhang Z, Singh K, Tsur Y, Zhou J, et al., J. Solid State Chem., 290 (2020) 121530. https://doi.org/10.1016/j.jssc.2020.121530
Yousaf M, Niaz Akhtar M, Yousaf Shah MAK, Rauf S, et al., Int. J. Hydrogen Energy, 46(15) (2021) 9996–10006. https://doi.org/10.1016/j.ijhydene.2020.01.166
Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, et al., J. Electrochem. Soc., 150(7) (2003) J33–J42. https://doi.org/10.1149/1.1574810
Kharton VV, Yaremchenko AA, Shaula AL, Viskup AP, et al., Defect Diffus. Forum, 226–228 (2004) 141–160. https://doi.org/10.4028/www.scientific.net/ddf.226-228.141
Tsagaroyannis J, Haralambous K J, Loizos Z, Petroutsos G, et al., Mater. Lett., 28(4–6) (1996) 393–400. https://doi.org/10.1016/0167-577X(96)00089-4
Kang Y, Han Y, Tian M, Huang C, et al., Appl. Catal. B: Environ., 278 (2020) 119305. https://doi.org/10.1016/j.apcatb.2020.119305
Fritsch C, Titus J, Roussière T, Lizandara-Pueyo C, et al., Chem. Ing. Tech., 94(11) (2022) 1727–1738. https://doi.org/10.1002/cite.202200072
do Carmo JVC, de Cássia F. Bezerra R, Guerra Y, Peña-Garcia R, et al., Catalysts, 12(9) (2022) 1033. https://doi.org/10.3390/catal12091033
do Carmo JVC, Pinheiro ALG, Oliveira AC, de Castro MO, et al., Ceram. Int., 47(5) (2021) 6279–6289. https://doi.org/10.1016/j.ceramint.2020.10.206
Nakamura Y, Chauhan SBS, Lim PB, Photonics, 11(10) (2024) 931. https://doi.org/10.3390/photonics11100931
Xie P, Shi Z, Feng M, Sun K, et al., Adv. Compos. Hybrid Mater., 5(2) (2022) 679–695. https://doi.org/10.1007/s42114-022-00479-2
Kostishin VG, Shakirzyanov RI, Nalogin AG, Shcherbakov SV, et al., Phys. Solid State, 63(3) (2021) 435–441. https://doi.org/10.1134/S1063783421030094
Kostishin VG, Korovushkin VV, Nalogin AG, Shcherbakov SV, et al., Phys. Solid State, 62(7) (2020) 1156–1164. https://doi.org/10.1134/S1063783420070124
Boscherini M, Storione A, Minelli M, Miccio F, et al., Energies, 16(17) (2023) 6375. https://doi.org/10.3390/en16176375
Wang P, Shi R, Zhao J, Zhang T, Adv. Sci., 11(8) (2024) 2305471. https://doi.org/10.1002/advs.202305471
Rogers JL, Mangarella MC, D’Amico AD, Gallagher JR, et al., ACS Catal., 6(9) (2016) 5873–5886. https://doi.org/10.1021/acscatal.6b01133
Meloni E, Martino M, Iervolino G, Ruocco C, et al., Energies, 15(7) (2022) 2383. https://doi.org/10.3390/en15072383
Yu J, Odriozola JA, Reina TR, Catalysts, 9(12) (2019) 1015. https://doi.org/10.3390/catal9121015
Sadykov VA, Eremeev NF, Sadovskaya EM, Chesalov YuA, et al., Top. Catal., 63(1–2) (2020) 166–177. https://doi.org/10.1007/s11244-020-01222-1
Smal EA, Simonov MN, Mezentseva NV, Krieger TA, et al., Appl. Catal. B: Environ., 283 (2021) 119656. https://doi.org/10.1016/j.apcatb.2020.119656
Singh M, Paydar S, Singh AK, Singhal R, et al., Energy Mater., 4(1) (2024) 400012. https://doi.org/10.20517/energymater.2023.54
Yadav AK, Sinha S, Kumar A, Int. J. Hydrogen Energy, 59 (2024) 1080–1093. https://doi.org/10.1016/j.ijhydene.2024.02.124
Omeiza LA, Kabyshev A, Bekmyrza K, Kuterbekov KA, et al., Mater. Sci. Energy. Technol., 8 (2025) 32–43. https://doi.org/10.1016/j.mset.2024.07.001
Alkhaldi RS, Adebunmi MA, Gondal MA, Mohamed MJS, et al., Int. J. Hydrogen Energy, 109 (2025) 81–94. https://doi.org/10.1016/j.ijhydene.2025.01.375
Qu L, Papaioannou EI, Chem. Eng. J., 496 (2024) 153791. https://doi.org/10.1016/j.cej.2024.153791
Sadykov VA, Eremeev NF, Fedorova YuE, Krasnov AV, et al., Int. J. Hydrogen Energy, 46(38) (2021) 20222–20239. https://doi.org/10.1016/j.ijhydene.2020.01.106
Tsurkan V, Krug von Nidda H A, Deisenhofer J, Lunkenheimer P, et al., Phys. Rep., 926 (2021) 1–86. https://doi.org/10.1016/j.physrep.2021.04.002
Salih SJ, Mahmood WM, Heliyon, 9(6) (2023) e16601. https://doi.org/10.1016/j.heliyon.2023.e16601
Dehghani Dastjerdi O, Shokrollahi H, Mirshekari S, Inorg. Chem. Commun., 153 (2023) 110797. https://doi.org/10.1016/j.inoche.2023.110797
Lysenko EN, Surzhikov AP, Vlasov VA, Nikolaev EV, et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 392 (2017) 1–7. https://doi.org/10.1016/j.nimb.2016.11.042
Stary O, Surzhikov AP, Malyshev AV, Lysenko EN, et al., Eurasian Phys. Tech. J., 18(3) (2021) 11–14. https://doi.org/10.31489/2021No3/11-14
Malyshev AV, Lysenko EN, Sheveleva EA, Surzhikova OA, et al., Eurasian Phys. Tech. J., 18(1) (2021) 3–8. https://doi.org/10.31489/2021No1/3-8
Surzhikov AP, Lysenko EN, Malyshev AV, Petrova A, et al., Eurasian Phys. Tech. J., 17(1) (2020) 26–34. https://doi.org/10.31489/2020No1/26-34
Stary O, Malyshev AV, Lysenko EN, Petrova A, Eurasian Phys. Tech. J., 17(2) (2020) 6–10. https://doi.org/10.31489/2020No2/6-10
Lysenko EN, Nikolaev EV, Vlasov VA, Svirkov AS, et al., Ceram. Int., 50(24A) (2024) 52632–52639. https://doi.org/10.1016/j.ceramint.2024.10.114
Kostishin VG, Andreev VG, Panina LV, Chitanov DN, et al., Inorg. Mater., 50(11) (2014) 1174–1178. https://doi.org/10.1134/S0020168514110077
Kostishin VG, Korovushkin VV, Panina LV, Andreev VG, et al., Inorg. Mater., 50(12) (2014) 1252–1256. https://doi.org/10.1134/S0020168514120115
Andreev VG, Kostishyn VG, Chitanov DN, Nikolaev AN, et al., The influence of basic chemical composition on the properties nickel-zinc ferrites, received by radiothermic sintering. Inž. Vestn. Dona [Internet] 3 2013 [cited 2025]. Russian. Available from: http://www.ivdon.ru/en/magazine/archive/n3y2013/1873, Accessed on 04 September 2025.
Kostishin VG, Komlev AS, Korobeynikov MV, Bryazgin AA, et al., Tavricheskii Nauchnyi Obozrevatel’, 4–3 (2015) 85–90. Russian.
Sadykov VA, Usoltsev VV, Fedorova YuE, Sobyanin VA, et al., Russ. J. Electrochem., 47(4) (2011) 488–493. https://doi.org/10.1134/S1023193511040148
Sadykov V, Mezentseva N, Usoltsev V, Sadovskaya E, et al., J. Power Sources, 196(17) (2011) 7104–7109. https://doi.org/10.1016/j.jpowsour.2010.07.096
Sadykov V, Usoltsev V, Yeremeev N, Mezentseva N, et al., J. Eur. Ceram. Soc., 33(12) (2013) 2241–2250. https://doi.org/10.1016/j.jeurceramsoc.2013.01.007
Sadykov VA, Mezentseva NV, Usoltsev VV, Kharlamova TS, et al., In: Fuel cell performance. New York: Nova Science Publishers, Inc.; 2012. pp. 143–210.
Sadykov VA, Pavlova SN, Kharlamova TS, Muzykantov VS, et al., In: Perovskites: Structure, properties and uses. New York: Nova Science Publishers, Inc.; 2010, pp. 67–178.
Gusev AA, Mikhailenko MA, Chem. Sustain. Dev., 32(5) (2024) 581–587. https://doi.org/10.15372/CSD2024592
Alem SAA, Latifi R, Angizi S, Hassanaghaei F, et al., Mater. Manuf. Process., 35(3) (2020) 303–327. https://doi.org/10.1080/10426914.2020.1718698
Kapoor AS. Microwave sintering of SOFC materials [dissertation]. Raleigh (USA): North Carolina State University; 2008. 62 p.
Rybakov KI, Egorov SV, Eremeev AG, Kholoptsev VV, et al, J. Mater. Res., 34(15) (2019) 2620-34. https://doi.org/10.1557/jmr.2019.232
Annenkov YuM, Ivashutenko AS, Bull. Tomsk Polytech. Univ., 308(7) (2005) 30–35. Russian.
Sutton WH, Am. Ceram. Soc. Bull., 68(2) (1989) 376–386.
Booske JH, Cooper RF, In: Willert-Porada M, editor. Advances in microwave and radio frequency processing. Berlin, Heidelberg: Springer; 2006. pp. 461–71. https://doi.org/10.1007/978-3-540-32944-2_49
Sing SL, Yeong WY, Wiria FE, Tay BY, et al., Rapid Prototyp. J., 23(3) (2017) 611–623. https://doi.org/10.1108/RPJ-11-2015-0178
Sharif A, Farid N, O'Connor GM, Results Eng., 16 (2022) 100731. https://doi.org/10.1016/j.rineng.2022.100731
Qian B, Shen Z, J. Asian Ceram. Soc., 1(4) (2013) 315–321. https://doi.org/10.1016/j.jascer.2013.08.004
Bhandari S, Vajpayee G, Lemos da Silva L, Hinterstein M, et al., Mater. Sci. Eng.: R: Rep., 162 (2025) 100877. https://doi.org/10.1016/j.mser.2024.100877
Atkinson HV, Davies S, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 31(12) (2000) 2981–3000. https://doi.org/10.1007/s11661-000-0078-2
Laptev AM, Bram M, Garbiec D, Räthel J, et al., Adv. Eng. Mater., 26(5) (2024) 2301391. https://doi.org/10.1002/adem.202301391
Ratzker B, Sokol M, Mater. Des., 233 (2023) 112238. https://doi.org/10.1016/j.matdes.2023.112238
Le Godec Y, Le Floch S, Materials, 16(3) (2023) 997. https://doi.org/10.3390/ma16030997
Nisar A, Zhang C, Boesl B, Agarwal A, Ceramics, 4(1) (2021) 20–39. https://doi.org/10.3390/ceramics4010003
DOI: https://doi.org/10.15826/elmattech.2025.4.062
Copyright (c) 2025 Nikita F. Eremeev, Yulia N. Bespalko, Mikhail A. Mikhailenko, Mikhail V. Korobeynikov, Vladislav A. Sadykov

This work is licensed under a Creative Commons Attribution 4.0 International License.
