Modeling the formation and growth of cubic sodium tungsten bronze during electrodeposition from a polytungstate melt
Abstract
Keywords
Full Text:
PDFReferences
Labbe P, Tungsten oxides, tungsten bronzes and tungsten bronze-type structures, Key Eng. Mater., 68 (1992) 293–339. https://doi.org/10.4028/www.scientific.net/KEM.68.293
Tegg L, Haberfehlner G, Kothleitner G, Kisi E, et al., Crystal structures, electrical properties, and electron energy-loss spectroscopy of the sodium and potassium tetragonal tungsten bronzes, J. Alloys Compd., 868 (2021) 159200. https://doi.org/10.1016/j.jallcom.2021.159200
Semerikova OL, Kosov AV, Grishenkova OV, Shchelkanova MS, Termicheskaya stabil'nost' i elektrofizicheskiye svoystva oksidnykh vol'framovykh bronz, poluchennykh elektrolizom rasplavov [Thermal stability and electrophysical properties of oxide tungsten bronzes produced by electrolysis of melts], Rasplavy, 6 (2024) 596–608. Russian. https://doi.org/10.31857/S0235010624060028
Lawrence S, Stevenson S, Mavadia K, Sermon P, Solid-state properties of some polycrystalline alkali-metal tungsten bronzes, Proc. Royal Soc. London. Ser. A: Math. Phys. Sci., 411(1840) (1987) 95–121. https://doi.org/10.1098/rspa.1987.0056
Ellerbeck LD, Shanks HR, Sidles PH, Danielson GC, Electrical resistivity of cubic sodium tungsten bronze, J. Chem. Phys., 35 (1961) 298–303. https://doi.org/10.1063/1.1731904
El-Sayed AM, Mousa SMA, Some properties of sodium tungsten bronzes as a function of sodium concentration, Ind. J. Chem. Technol., 12 (2005) 304–308.
Sano K, Nitta Y, Ōno Y, Transition temperature of superconductivity in sodium tungsten bronze - theoretical study based on first-principles calculations, J. Phys. Soc. Jpn., 89(11) (2020) 113704. https://doi.org/10.7566/JPSJ.89.113704
Yang G, Qi Y, Hu D, Wang H, et al., Sodium tungsten bronze (NaxWO3)-doped near-infrared-shielding bulk glasses for energy-saving applications, J. Mater. Sci. Technol., 89 (2021) 150–157. https://doi.org/10.1016/j.jmst.2020.12.082
Tegg L, Cuskelly D, Keast VJ, The sodium tungsten bronzes as plasmonic materials: fabrication, calculation and characterization, Mater. Res. Express, 4 (2017) 065703. https://doi.org/10.1088/2053-1591/aa6c40
Tegg L, Cuskelly D, Keast VJ, Plasmon responses in the sodium tungsten bronzes, Plasmonics, 13 (2018) 437–444. https://doi.org/10.1007/s11468-017-0528-y
Zimmer A, Gilliot M, Tresse M, Broch L, et al., Coloration mechanism of electrochromic NaxWO3 thin films, Optics Lett., 45(5) (2019) 1104–1107. https://doi.org/10.1364/OL.44.001104
Azimirad R, Khademi A, Akhavan JJ, Moshfegh AZ, Growth of Na0.3WO3 nanorods for the field emission application, J. Phys. D: Appl. Phys., 42 (2009) 205405. https://doi.org/10.1088/0022-3727/42/20/205405
Xiong X, Liu Z, Yang L, Liang G, et al., Defect and interface engineered tungsten bronze superstructure anode toward advanced sodium storage, Adv. Funct. Mater., 33(49) (2023) 2305342. https://doi.org/10.1002/adfm.202305342
Wang L, Zhan J, Fan W, Cui G, et al., Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts, Chem. Comm., 46 (2010) 8833–8835. https://doi.org/10.1039/C0CC03660A
Vakarin SV, Melyaeva AA, Semerikova OL, Kondratyuk VS, et al., Catalase activity of coarse grained and nanosized oxide tungsten bronzes obtained by electrolysis of molten salts, Russ. Chem. Bull., 60 (2011) 1985–1988. https://doi.org/10.1007/s11172-011-0300-y
Petrov LA, Shishmakov AB, Mikushina YV, Chupakhin ON, et al., Behavior of nanosized tungsten oxide bronzes produced by high-temperature electrolysis in model processes of desulfurization of petroleum products, Russ. J. Inorg. Chem., 59 (2014) 7–10. https://doi.org/10.7868/s0044457x14010127
Griffith CS, Luca V, Hanna JV, Pike KJ, et al., Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium, Inorg. Chem., 48(13) (2009) 5648–5662. https://doi.org/10.1021/ic801294x
Egorin AM, Dran’kov AN, Didenko NV, Tokar’ EA, et al., Synthesis and sorption characteristics of tungsten oxides-based materials for Sr-90 removal from water media, J. Mater. Sci., 55 (2020) 9374–9384. https://doi.org/10.1007/s10853-020-04683-7
Jie S, Guo X, Ouyang Z, Tumor ablation using novel photothermal NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis, Int. J. Nanomed., 14 (2019) 7353–7362. https://doi.org/10.2147/IJN.S217974
Sologubova IA, Kotvanova MK, Pavlova SS, Self-propagating high-temperature synthesis of oxide bronzes with regulated composition and properties, J. Phys.: Conf. Ser., 1347 (2019) 012101. https://doi.org/10.1088/1742-6596/1347/1/012101
Kaliev KA, Baraboshkin AN, Elektrokristallizatsiya oksidnykh bronz perekhodnykh metallov iz rasplavlennykh soley [Electrocrystallization of transition metal oxide bronzes from molten salts]. In: Oksidnyye bronzy [Oxide bronzes]. Moscow: Nauka; 1982. 137–175. Russian.
Vakarin SV, Semerikova OL, Kosov AV, Pankratov AA, et al., Electrochemical deposition of nanocrystalline tungsten bronze films on platinum, Int. J. Adv. Res., 3(8) (2015) 691–700.
Semerikova OL, Vakarin SV, Kosov AV, Plaksin SV, et al., Electrochemical synthesis of nanohybrid systems based on copper and the oxide tungsten bronzes, J. Electrochem. Soc., 166(15) (2019) D792–D797. https://doi.org/10.1149/2.0541915jes
Banks E, Fleischmann CW, Meites L, On the nature of the species reduced during the electrochemical synthesis of tungsten bronzes, J. Solid State Chem., 1(3–4) (1970) 372–375. https://doi.org/10.1016/0022-4596(70)90118-0
Meites L, Banks E, Fleischmann CW, Voltammetric behaviors of platinum electrodes and decomposition potentials of alkali tungstate and polytungstate melts, Anal. Chem., 44(7) (1972) 1133–1139. https://doi.org/10.1021/ac60315a013
Fredlein RA, Damjanovic A, Electrochemical deposition and dissolution of tungsten oxide bronzes, J. Solid State Chem., 4(1) (1972) 94–102. https://doi.org/10.1016/0022-4596(72)90137-5
Randin J-P, Electrochemical deposition of sodium tungsten bronzes, J. Electrochem. Soc., 120 (1973) 1325–1330. https://doi.org/10.1149/1.2403255
Randin J-P, Kinetics of the electrochemical deposition and dissolution of sodium tungsten bronzes, Electrochim. Acta., 19(11) (1974) 745–751. https://doi.org/10.1016/0013-4686(74)80018-6
Drobasheva TI, Spitsyn VI, Vol'framovyye i molibdenovyye bronzy s dvumya shchelochnymi elementami [Tungsten and molybdenum bronzes with two alkali elements]. In: Oksidnyye bronzy [Oxide bronzes]. Moscow: Nauka; 1982. 40–75. Russian.
Baraboshkin AN, Kaliev KA, Aksent'yev AG, Obrazovaniye metastabil'nykh faz na katode v nachal'nyy period elektroliza [Formation of metastable phases at the cathode in the initial period of electrolysis], Elektrokhimiya 14(12) (1978) 1836–1839. Russian.
Baraboshkin AN, Tarasova KP, Nazarov VA, Martemyanova ZS, Izucheniye sostava i struktury katodnykh osadkov pri elektrolize rasplavlennykh smesey Na2WO4-WO3 [Study of the composition and structure of cathode deposits during electrolysis of molten Na2WO4-WO3 mixtures], Trudy In-ta elektrokhimii UNTS AN SSSR 19 (1973) 44–48. Russian.
Vakarin SV, Baraboshkin AN, Kaliev KA, Zyrianov VG, Crystal growth of tungsten bronzes with a hexagonal structure, J. Cryst. Growth., 151 (1995) 121–126. https://doi.org/10.1016/0022-0248(94)00626-1
Okada K, Miyake M, Iwai S, Ohno H, et al., Structural analysis of molten Na2WO4, J. Chem. Soc. Faraday Trans. 2, 74 (1978) 1141–1148. https://doi.org/10.1039/F29787401141
Miyake M, Okada K, Iwai S, Ohno H, et al., Structural analysis of molten Na2W2O7, J. Chem. Soc. Faraday Trans. 2, 74 (1978) 1880–1884. https://doi.org/10.1039/F29787401880
Voron’ko YK, Sobol’ AA, Influence of cations on the vibrational spectra and structure of [WO4] complexes in molten tungstates, Inorgan. Mater., 41(4) (2005) 420–428. https://doi.org/10.1007/s10789-005-0146-5
Voronko YK, Sobol AA, Shukshin VE, Raman scattering study of molten alkali-metal molybdates and tungstates rich in basic oxides, Inorgan. Mater., 50(8) (2014) 837–843. https://doi.org/10.1134/S0020168514080172
Wang J, You J, Wang M, Lu L, et al., In-situ studies on the micro-structure evolution of A2W2O7 (A = Li, Na, K) during melting by high temperature Raman spectroscopy and density functional theory, Spectrochim. Acta A: Molecular and Biomolecular Spectroscopy, 185 (2017) 188–196. https://doi.org/10.1016/j.saa.2017.05.046
Wang J, You JL, Sobol AA, Lu LM, et al., In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states, J. Raman Spectroscopy, 48(2) (2017) 298–304. https://doi.org/10.1002/jrs.5036
Wang J, You JL, Wang YY, Wang M, et al., In-situ raman spectroscopic study of the molten tungstates in Li2O-WO3 binary system, J. Light Scattering, 2 (2016) 149–152. Chinese. https://doi.org/10.13883/j.issn1004-5929.201602010
Kosov AV, Semerikova OL, Vakarin SV, Grishenkova OV, et al., Ionic equilibria in polytungstate melts, Processes, 10 (2022) 2658. https://doi.org/10.3390/pr10122658
Kosov AV, Grishenkova OV, Semerikova OL, Vakarin SV, et al., Mechanism and kinetics of the phase formation and dissolution of NaxWO3 on a Pt electrode in a Na2WO4–WO3 melt, Materials, 16(22) (2023) 7207. https://doi.org/10.3390/ma16227207
Isaev VA, Grishenkova OV, Kinetics of electrochemical nucleation and growth, Electrochem. Comm., 3 (2001) 500–504. https://doi.org/10.1016/S1388-2481(01)00207-7
Gamburg YD, Zangari G. Theory and practice of metal electrodeposition. New York: Springer; 2011. 378 p.
Scharifker BR, Hills GJ, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
Isaev VA, Grishenkova OV, Zaykov YP, Kosov AV, Semerikova OL, Analysis of potentiostatic current transients for multiple nucleation with diffusion and kinetic controlled growth, J. Electrochem. Soc., 166 (2019) D851–D856. https://doi.org/10.1149/2.1061915jes
Isaev VA, Grishenkova OV, Zaykov YuP, Analysis of the geometrical-probabilistic models of electrocrystallization, Russian Metallurgy (Metally), 2016(8) 2016. 776–784. https://doi.org/10.1134/S0036029516080061
Kosov AV, Grishenkova OV, Isaev VA, Zaikov Y, Simulation of diffusion-controlled growth of interdependent nuclei under potentiostatic conditions, Materials, 15 (2022) 3603. https://doi.org/10.3390/ma15103603
Gunawardena GA, Hills GJ, Montenegro I, Potentiostatic studies of electrochemical nucleation, Electrochim. Acta, 23 (1978) 693–697. https://doi.org/10.1016/0013-4686(78)80026-7
DOI: https://doi.org/10.15826/elmattech.2025.4.063
Copyright (c) 2025 Alexander V. Kosov, Olga L. Semerikova, Olga V. Grishenkova

This work is licensed under a Creative Commons Attribution 4.0 International License.
