Recent advances in heteroatom substitution Sr2Fe1.5Mo0.5O6–δ oxide as a more promising electrode material for symmetrical solid-state electrochemical devices: A review
Abstract
In recent years, the interest in solid state electrochemical devices has significantly increased due to the various cases of their use in the energy field. The first case is the solid oxide fuel cells with both oxygen-ion and proton-conducting membranes. The second case is the electrolysis cells for hydrogen production. As a rule, in both cases, electrochemical cells consist of an ion-conducting membrane and two different electrodes. The present review is focused on structural, physicochemical, and electrochemical properties of a complex oxide based on strontium ferrite with partial replacement of iron by molybdenum. This complex oxide has a number of unique characteristics: in particular, it is able to function effectively as an electrode in oxidizing and strongly reducing atmospheres, which makes it a promising material for electrochemical devices based on solid electrolytes with symmetrical electrodes. Doping with elements in A-, B- and O-sublattices and surface modification increases electro-catalytic activity of Sr2Fe1.5Mo0.5O6−δ porous oxide material, which increases competitiveness of the electrode material for application in solid oxide electrochemical devices. Mechanisms for improving electro-catalytic activity are outlined stepwise by doping of different sublattices of double perovskite, by level of doping, and by different types of dopants. In conclusion, the data on material conductivity, power densities of both symmetric and fuel cells are systematized, and the remaining problems and prospects for future developments and upgrades of Sr2Fe1.5Mo0.5O6−δ oxide electrode material are described.
Keywords
Full Text:
PDFReferences
Filippov SP, Yaroslavtsev AB, Hydrogen energy: development prospects and materials, Russ. Chem. Rev. 90(6) (2021) 627−643. https://doi.org/10.1070/RCR5014
Yakubson KI, Prospects for production and use of hydrogen as one of directions of the development of low-carbon economy in the Russian Federation, Russ. J. Appl. Chem. 93 (2020) 1775−1795. https://doi.org/10.1134/S1070427220120010
Makaryan IA, Sedov IV, Market Potential of Industrial Technologies for Production of Synthetic Bases of Motor Oils, Russ. J. General Chem. 91(6) (2021) 1243–1259. https://doi.org/10.1134/S1070363221060414
Peng J, Huang J, Wu X, Xu Y, et al., Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review, J. Power Sources 505 (2021) 230058. https://doi.org/10.1016/j.jpowsour.2021.230058
Simonenko TL, Simonenko NP, Simonenko EP, Sevastyanov VG, et al., Synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3–δ oxide promising as a cathode material of modern solid-oxide fuel cells, Russ. J. Inorg. Chem. 66(5) (2021) 662–666. https://doi.org/10.1134/S0036023621050193
Gilev AR, Kiselev EA, Cherepanov VA, The Effect of Cobalt Doping on Physicochemical Properties of La1.5Sr0.5Ni1–yCoyO4+d, Russ. J. Phys. Chem. A 94 (2020) 2474–2481. https://doi.org/10.1134/S0036024420120110
Klyndyuk AI, Zhuravleva YaYu, Gundilovich NN, Crystal structure, thermal and electrotransport properties of NdBa1–xSrxFeCo0.5Cu0.5O5+δ (0.02≤x≤0.20) solid solutions Chim. Tech. Acta 8(3) (2021) 20218301. https://doi.org/10.15826/chimtech.2021.8.3.01
Lyskov NV, Galin MZ, Napolskii PhS, Mazo GN, Increasing the Electrochemical Activity of the Pr1.95La0.05CuO4 Cathode by Laser Modification of the Electrode/Electrolyte Interface Profile, Russ. J. Electrochem. 58 (2022) 93–99. https://doi.org/10.1134/S1023193522020070
Liu Y, Shao Z, Mori T, Jiang SP, Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future, Mater. Reports: Energy 1(1) (2021) 100003. https://doi.org/10.1016/j.matre.2020.11.002
Yue W, Li Y, Zheng Y, Wu T, et al., Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering, Nano Energy 62 (2019) 64–78. https://doi.org/10.1016/j.nanoen.2019.05.006
Jiang SP, Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells, J. Mat. Sci.38 (2003) 3775−3782. https://doi.org/10.1023/A:1025936317472
Goodenough JB, Huang YH, Alternative anode materials for solid oxide fuel cells, J. Power Sources, 173 (2007) 1−10. https://doi.org/10.1016/j.jpowsour.2007.08.011
Sasaki K, Haga K, Yoshizumi T, Minematsu D, et al., Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance, J. Power Sources196 (2011) 9130−9140. https://doi.org/10.1016/j.jpowsour.2010.09.122
Skafte TL, Blennow P, Hjelm J, Graves C, Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes, J. Power Sources373 (2018) 54–60. https://doi.org/10.1016/j.jpowsour.2017.10.097
Khrustov AV, Ananyev MV, Bronin DI, Osinkin DA, et al., Characterisation of Ni-cermet degradation phenomena II. Relationship between connectivity and resistivity, J. Power Sources 497 (2021) 229847. https://doi.org/10.1016/j.jpowsour.2021.229847
Osinkin DA, Long-term tests of Ni-Zr0.9Sc0.1O1.95 anode impregnated with CeO2 in H2+H2O gas mixtures, Int. J. Hydrogen Energy41 (2016) 17577–17584. http://doi.org/10.1016/j.ijhydene.2016.07.136
Istomin SYa, Lyskov NV, Mazo GN, Antipov EV, Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells, Russ. Chem. Rev., 90(6) (2021) 644–676. https://doi.org/10.1070/RCR4979
Zamudio-García J, Caizan-Juanarena L, Porras-Vazquez JM, Losilla ER, et al., A review on recent advances and trends in symmetrical electrodes for solid oxide cells, J. Power Sources520 (2022) 230852. https://doi.org/10.1016/j.jpowsour.2021.230852
Ebbesen SD, Jensen SH, Hauch A, Mogensen MB, High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells, Chem. Rev.114 (2014) 10697–10734 https://doi.org/10.1021/cr5000865
Shu L, Sunarso J, Hashim SS, Mao J, et al., Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrogen Energy44(59) (2019) 31275–31304. https://doi.org/10.1016/j.ijhydene.2019.09.220
Zhu K, Luo B, Liu Z, Wen X, Recent advances and prospects of symmetrical solid oxide fuel cells, Ceram. Int.48(7) (2022) 8972−8986. https://doi.org/10.1016/j.ceramint.2022.01.258
Kuhn M, Hashimoto S, Sato K, Yashiro K, et al., Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3–δ, Solid State Ionics 195 (2011) 7–15. https://doi.org/10.1016/j.ssi.2011.05.013
Mosleh M, Sogaard M, Hendriksen PV, Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3−δ Thin Films, J. Electrochem. Soc. 156 (2009) B441. https://doi.org/10.1149/1.3062941
Hashimoto S, Fukuda Y, Kuhn M. Sato K, et al., Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4Co1−yFeyO3−δ (y = 0.2, 0.4, 0.6, 0.8), Solid State Ionics 181 (2010) 1713–1719. https://doi.org/10.1016/j.ssi.2010.09.024
Han Z, Wang Y, Yang Y, Li L, High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−δ anodes toward sulfur resistance, J. Alloys and Compd.703 (2017) 258–263. https://doi.org/10.1016/j.jallcom.2017.01.341
Liu GY, Rao GH, Feng XM, Yang HF, et al., Atomic ordering and magnetic properties of non-stoichiometric double-perovskite Sr2FexMo2−xO6, J. Phys.: Condens. Matter.15 (2003) 2053–2060. https://doi.org/10.1088/0953-8984/15/12/322
Bugaris DE, Hodges JP, Huq A, Chance WM, et al., Investigation of the high-temperature redox chemistry of Sr2Fe1.5Mo0.5O6−δ via in situ neutron diffraction, J. Mater. Chemistry A, 2 (2014) 4045–4054. https://doi.org/10.1039/C3TA14913G
Goldschmidt VM, Die Gesetze der Krystallochemie [The laws of crystallochemistry], Naturwiss. 14 (1926) 477–485. https://doi.org/10.1007/BF01507527
Longo J, Ward R, Magnetic Compounds of Hexavalent Rhenium with the Perovskite-type Structure, J. Am. Chem. Soc. 83(13) (1961) 2816–2818. https://doi.org/10.1021/ja01474a007
Galasso FS, Douglas FC, Kasper RJ, Relationship Between Magnetic Curie Points and Cell Sizes of Solid Solutions with the Ordered Perovskite Structure, J. Chem. Phys. 44 (1966) 1672. https://doi.org/10.1063/1.1726907
Nakagawa T, Magnetic and electrical properties of ordered perovskite Sr2(FeMo)O6 and its related compounds, J. Phys. Soc. Jpn.24(4) (1968) 806–811. https://doi.org/10.1143/JPSJ.24.806
Bartha C, Plapcianu C, Crisan A, Enculescu M, et al., Structural and magnetic properties of Sr2FeMoO6 obtained at low temperatures, Dig. J. Nanomater. Bios. 11(3) (2016) 773–780
Fang TT, Ko TF, Factors Affecting the Preparation of Sr2Fe2-xMoxO6, J. Am. Ceram. Soc.86(9) (2003)1453–1455. https://doi.org/10.1111/j.1151-2916.2003.tb03495.x
Alvarado-Flores JJ, Mondragón-Sánchez R, Ávalos-Rodríguez ML, Alcaraz-Vera JV, et al., Synthesis, characterization and kinetic study of the Sr2FeMoO6-δ double perovskite: New findings on the calcination of one of its precursors, Int. J. Hydrogen Energ.46(51) (2021) 26185–26196. https://doi.org/10.1016/j.ijhydene.2021.01.191
Miao G, Yuan Ch, Chen T, Zhou Yu, et al., Sr2Fe1+xMo1-xO6-δ as anode material of cathode-supported solid oxide fuel cells, Int. J. Hydrogen Energ. 41(2) (2016) 1104–1111. https://doi.org/10.1016/j.ijhydene.2015.12.045
Yang D, Yang T, Sun Q, Chen Yu, et al., The annealing effects on the crystal structure, magnetism and microstructure of the ferromagnetic double perovskite Sr2FeMoO6 synthesized via spark plasma sintering, J Alloy. Compd., 728 (2017) 337–342. https://doi.org/10.1016/j.jallcom.2017.09.027
Zhai YQ, Qiao J, Qiu MD, Research on Degradation of Dye Acid Red B by Sr2FeMoO6 Synthesized by Microwave Sintering Method, E-J. Chem.9(2) (2012) 818–824. https://doi.org/10.1155/2012/239305
Santosh M, Lacotte M, David A, Boullay Ph, et al., Pulsed laser deposition of Sr2FeMoO6 thin films grown on spark plasma sintered Sr2MgWO6 substrates, J. Phys. D Appl. Phys. 50(23) (2017) 235301. https://doi.org/10.1088/1361-6463/aa6e3e
Valdés J, Reséndiz D, Cuán A, Nava R, et al., Sol-Gel Synthesis of the Double Perovskite Sr2FeMoO6 by Microwave Technique, Materials 14(14) (2021) 3876. https://doi.org/10.3390/ma14143876
Cernea M, Vasiliu F, Plapcianu C, Bartha C, et al., Preparation by sol–gel and solid state reaction methods and properties investigation of double perovskite Sr2FeMoO6, J. Eur. Ceram. Soc.33(13–14) (2013) 2483–2490. https://doi.org/10.1016/j.jeurceramsoc.2013.03.026
Calleja A, Capdevila XG, Segarra M, Frontera C, et al., Cation order enhancement in Sr2FeMoO6 by water-saturated hydrogen reduction, J .Eur. Ceram. Soc.31 (2011) 121–127. https://doi.org/10.1016/j.jeurceramsoc.2010.08.002
Retuerto M, Alonso JA, Martínez-Lope MJ, Martínez JL, et al., Record saturation magnetization, Curie temperature, and magnetoresistance in Sr2FeMoO6 double perovskite synthesized by wet-chemistry techniques, Appl. Phys. Lett. 85 (2004) 266. https://doi.org/10.1063/1.1772857
Raittila J, Salminem T, Suominem T, Schlesier K, et al., Nanocrystalline Sr2FeMoO6 prepared by citrate-gel method, J. Phys. Chem. Solids67(8) (2006) 1712–1718. https://doi.org/10.1016/j.jpcs.2006.03.009
Xi X, Liu J, Luo W, Fan Y, et al., Unraveling the Enhanced Kinetics of Sr2Fe1+xMo1-xO6-δ Electrocatalysts for High-Performance Solid Oxide Cells, Adv. Energy Mater. 11(48) (2021) 2102845. https://doi.org/10.1002/aenm.202102845
Muñoz-García AB, Bugaris DE, Pavone M, Hodges JP, et al., Unveiling Structure−Property Relationships in Sr2Fe1.5Mo0.5O6−δ, an Electrode Material for Symmetric Solid Oxide Fuel Cells, J. Am. Chem. Soc. 134 (2012) 6826−6833. https://doi.org/10.1021/ja300831k
Markov AA, Leonidov IA, Patrakeev MV, Kozhevnikov VL, et al., Structural stability and electrical transport in SrFe1−xMoxO3−δ, Solid State Ionics 179(21–26) (2008) 1050–1053. https://doi.org/10.1016/j.ssi.2008.01.026
Wang Y, Li P, Li H, Zhao Y, Li Y, Synthesis and enhanced electrochemical performance of Sm-doped Sr2Fe1.5Mo0.5O6, Fuel Cells 14 (2014) 973–978. https://doi.org/10.1002/fuce.201300250
Osinkin DA, Kolchugin AA, Bogdanovich NM, Beresnev SM, Performance and redox stability of a double–layer Sr2Fe1.5Mo0.5O6−δ-based electrode for solid state electrochemical application, Electrochim. Acta361 (2020) 137058. https://doi.org/10.1016/j.electacta.2020.137058
Liu Q, Bugaris DE, Xiao GL, Chmara M, et al., Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells, J. Power Sources196(22) (2011) 9148–9153. https://doi.org/10.1016/j.jpowsour.2011.06.085
Retuerto M, Li MR, Go YB, Ignatov A, et al., Magnetic and Structural Studies of the Multifunctional Material SrFe0.75Mo0.25O3−δ, Inorg. Chem. 51(22) (2012) 12273−12280. https://doi.org/10.1021/ic301550m
Osinkin DA, Lobachevskaya NI, Suntsov AYu, The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6−δ + Ce0.8Sm0.2O1.9−δ anode for the intermediate temperature solid oxide fuel cells, J Alloy. Compd.708 (2017) 451−455. https://doi.org/10.1016/j.jallcom.2017.03.057
Wang P, Qian W, Xu R, Cheng J, Novel cathode material for solid oxide fuel cells based on Ba-doped Sr2Fe1.5Mo0.5O6, Process. Appl. Ceram. 16(1) (2022) 64–68. https://doi.org/10.2298/PAC2201064W
Li Ch, Zhang Q, Liu W, Tian X, et al., Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step cosintering method, J. Asian Ceram. Soc. (2022) 1–10. https://doi.org/10.1080/21870764.2022.2057640
Wright JH, Virkar AV, Liu Q, Chen F, Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode, J. Power Sources237 (2013) 13–18. https://doi.org/10.1016/j.jpowsour.2013.02.079
Xiao G, Liu Q, Zhao F, Zhang L, et al., Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte, J. Electrochem. Soc. 158 (2011) B455. https://doi.org/10.1149/1.3556085
Santos-Gómez L, León-Reina L, Porras-Vázquez JM, Losilla ER, et al., Chemical stability and compatibility of double perovskite anode materials for SOFCs, Solid State Ionics239 (2013) 1–7. https://doi.org/10.1016/j.ssi.2013.03.005
Gou M, Ren R, Sun W, Xu C, et al., Nb-doped Sr2Fe1.5Mo0.5O6−δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells, Ceram. Int. 45 (2019) 15696–15704. https://doi.org/10.1016/j.ceramint.2019.03.130
Wang Y, Li P, Li H, Zhao Y, et al., Synthesis and enhanced electrochemical performance of Sm-doped Sr2Fe1.5Mo0.5O6, Fuel Cells 14(6) (2014) 973–978. https://doi.org/10.1002/fuce.201300250
Li H, Zhao Y, Wang Y, Li Y, Sr2Fe2-xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio, Catal. Today 259(2) (2016) 417–422. https://doi.org/10.1016/j.cattod.2015.04.025
Fan Y, Xi X, Li J, Wang Q, et al., Barium-doped Sr2Fe2-xMoxO6−δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion, J. Am. Ceram. Soc.105(5) (2022) 3613–3624. https://doi.org/10.1111/jace.18329
Karim AH, Abdalla AM, Absah HQHH, Kamis AAM, et al., Synthesis and characterization of Sr2Fe0.75Ti0.25MoO6-δ as anode for solid oxide fuel cell, ECS J. Solid State Sci. Technol.26(1) (2018) 100–106
Abdullaev MM, Istomin SYa, Sobolev AV, Presnyakov IA, et al., Synthesis and Study of (Sr,La)2FeCo0.5Mo0.5O6–δ Oxides with Double Perovskite Structure. Russ. J. Inorg. Chem.64(6) (2019) 696–704. https://doi.org/10.1134/S0036023619060032
Qiu P, Sun Sh, Li J, Jia L., A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells, Sep. Purif. Technol. 298 (2022) 121581. https://doi.org/10.1016/j.seppur.2022.121581
Tomioka Y, Okuda T, Okimoto Y, Kumai R, et al., Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6, Phys. Rev. B61 (2000) 422. https://doi.org/10.1103/PhysRevB.61.422
Muñoz-García AB, Pavone M, Carter EA, Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport, Chem. Mater. 23(20) (2011) 4525–4536. https://doi.org/10.1021/cm201799c
Muñoz-García AB, Pavone M, Ritzmann AM, Carter EA, Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling, Phys. Chem. Chem. Phys.15 (2013) 6250–6259. https://doi.org/10.1039/C3CP50995H
Han Z, Dong H, Wu Y, Yang Y, Locating the rate-limiting step of hydrogen conversion on Sr2Fe1.5Mo0.5O6 (001) surface: Implications for efficient SOFC anode design, Appl. Surf. Sci.595 (2022) 153513. https://doi.org/10.1016/j.apsusc.2022.153513
Qi H, Lee YL, Yang T, Li W, et al., Positive Effects of H2O on the Hydrogen Oxidation Reaction on Sr2Fe1.5Mo0.5O6−δ-Based Perovskite Anodes for Solid Oxide Fuel Cells, ACS Catal.10(10) (2020) 5567–5578. https://doi.org/10.1021/acscatal.9b05458
Ammal SCh, Heyden A, Reaction kinetics of the electrochemical oxidation of CO and syngas fuels on a Sr2Fe1.5Mo0.5O6−δ perovskite anode, J. Mater. Chem. A3 (2015) 21618–21629. https://doi.org/10.1039/C5TA05056A
Liu Q, Dong X, Xiao G, Zhao F, et al., A Novel Electrode Material for Symmetrical SOFCs, Adv. Mater.22(48) (2010) 5478–5482. https://doi.org/10.1002/adma.201001044
Markandeya Y, Reddy YS, Bale S, REDDY CV, et al., Characterization and thermal expansion of Sr2FexMo2−xO6 double perovskites, Bull. Mater. Sci.38(6) (2015) 1603–1608. https://doi.org/10.1007/s12034-015-0972-2
Suthirakun S. Rational Design of Perovskite Based Anode Materials For Solid Oxide Fuel Cells: A Computational Approach [dissertation]. Columbia (USA): University of South Carolina; 2013. 193 p.
Suthirakun S, Ammal SCh, Muñoz-García AB, Xiao G, et al., Theoretical Investigation of H2 Oxidation on the Sr2Fe1.5Mo0.5O6 (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions, J. Am. Chem. Soc. 136 (2014) 8374−8386. https://doi.org/10.1021/ja502629j
Tian H, Li W, Ma L, Yang T, et al., Deconvolution of Water-Splitting on the Triple-Conducting Ruddlesden–Popper-Phase Anode for Protonic Ceramic Electrolysis Cells, ACS Appl. Mater. Interfaces 12 (44) (2020) 49574-49585. https://doi.org/10.1021/acsami.0c12987
Walker E, Ammal SC, Suthirakun S, Chen F, et al., Mechanism of Sulfur Poisoning of Sr2Fe1.5Mo0.5O6−δ Perovskite Anode under Solid Oxide Fuel Cell Conditions, J. Phys. Chem. C 118(41) (2014) 23545–23552. https://doi.org/10.1021/jp507593k
Zhi C, Yang W, Improvement of Mo-doping on sulfur-poisoning of Ni catalyst: Activity and selectivity to CO methanation, Comput. Theor. Chem. 1197 (2021) 113140. https://doi.org/10.1016/j.comptc.2020.113140
Osinkin DA, Lobachevskaya NI, Bogdanovich NM, Effect of the Copper Oxide Sintering Additive on the Electrical and Electrochemical Properties of Anode Materials Based on Sr2Fe1.5Mo0.5O6−δ, Russ. J. Appl. Chem.90(10) (2017) 1686−1692. https://doi.org/10.1134/S1070427217100196
Osinkin DA, Precursor of Pr2NiO4−δ as a highly effective catalyst for the simultaneous promotion of oxygen reduction and hydrogen oxidation reactions in solid oxide electrochemical devices, Int. J. Hydrogen Energ.46 (2021) 24546−24554. https://doi.org/10.1016/j.ijhydene.2021.05.022
Porotnikova NM, Ananyev MV, Osinkin DA, Khodimchuk AV, et al., Increase in the density of Sr2Fe1.5Mo0.5O6−δ membranes through an excess of iron oxide: The effect of iron oxide on transport and kinetic parameters, Surf.29 (2022) 101784 https://doi.org/10.1016/j.surfin.2022.101784
Zhang L, Liu Y, Zhang Y, Xiao G, et al., Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6−δelectrodes by Ce0.8Sm0.2O1.9 nanoparticles, Electrochem. Commun.13(7) (2011) 711−713. https://doi.org/10.1016/j.elecom.2011.04.017
Lv H, Zhou Y, Zhang X, Song Y, et al., Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electroreduction in solid oxide electrolysis cell, J. Energy Chem.35 (2019) 71−78. https://doi.org/10.1016/j.jechem.2018.11.002
Osinkin DA, Hydrogen oxidation kinetics on a redox stable electrode for reversible solid-state electrochemical devices: The critical influence of hydrogen dissociation on the electrode surface, Electrochim. Acta389 (2021) 138792. https://doi.org/10.1016/j.electacta.2021.138792
Xiao J, Han D, Yu F, Zhang L, et al., Characterization of symmetrical SrFe0.75Mo0.25O3−δ electrodes in direct carbon solid oxide fuel cells, J. Alloy. Compd. 688 (2016) 939−945. https://doi.org/10.1016/j.jallcom.2016.07.223
Gao J, Meng X, Luo T, Wu H, et al., Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3−δ (SFMO) electrodes, Int. J. Hydrogen Energ.,42 (2017) 18499−18503. https://doi.org/10.1016/j.ijhydene.2017.03.205
Li Y, Zou Sh, Ju J, Xi Ch, Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells, Solid State Ion.319 (2018) 98–104. https://doi.org/10.1016/j.ssi.2018.02.003
Zhu Z, Sun K, Xu D, Gu Y, et al., Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6−δ electrodes via infiltration of Pr6O11 bifunctional catalyst, Electrochim. Acta 402 (2022) 139569. https://doi.org/10.1016/j.electacta.2021.139569
Li C, Zhang Q, Liu W, Tian X, et al., Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step co-sintering method, J. Asian Ceram. Soc.10(2) (2022) 386–395. https://doi.org/10.1080/21870764.2022.2057640
Wang Y, Liu T, A highly active and stable Sr2Fe1.5Mo0.5O6−δ−Ce0.8Sm0.2O1.95 ceramic fuel electrode for efficient hydrogen production via a steam electrolyzer without safe gas, Int. J. Coal Sci. Technol. 9 (2022) 4. https://doi.org/10.1007/s40789-022-00470-8
Liu Q, Yang Ch, Dong X, Chen F, Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells, Int. J. Hydrogen Energ.35 (2010) 10039−10044. https://doi.org/10.1016/j.ijhydene.2010.08.016
Osinkin DA, Kinetics of CO oxidation and redox cycling of Sr2Fe1.5Mo0.5O6−δ electrode for symmetrical solid state electrochemical devices, J. Power Sources 418 (2019) 17–23. https://doi.org/10.1016/j.jpowsour.2019.02.026
Li Y, Li Y, Zhang S, Ren C, et al., Mutual Conversion of CO–CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells, ACS Appl. Mater. Interfaces 14(7) (2022) 9138–9150. https://doi.org/10.1021/acsami.1c23548
Li Y, Chen X, Yang Y, Jiang Y, Mixed-Conductor Sr2Fe1.5Mo0.5O6−δas Robust Fuel Electrode for Pure CO2 Reduction in Solid Oxide Electrolysis Cell, ACS Sustainable Chem. Eng.5(12) (2017) 11403–11412. https://doi.org/10.1021/acssuschemeng.7b02511
Zhang T, Zhal Y, Zhang X, Zhang H, Thermal Stability of an in Situ Exsolved Metallic Nanoparticle Structured Perovskite Type Hydrogen Electrode for Solid Oxide Cells, ACS Sustainable Chem. Eng. 7(12) (2019) 17834–17844. https://doi.org/10.1021/acssuschemeng.9b04350
Wachowski S, Li Z, Polfus JM, Norby T, Performance and stability in H2S of SrFe0.75Mo0.25O3−δ as electrode in proton ceramic fuel cells, J. Eur. Ceram. Soc. 38 (2018) 163–171. https://doi.org/10.1016/j.jeurceramsoc.2017.08.020
Munoz-Garcia AB, Pavone M, K-doped Sr2Fe1.5Mo0.5O6−δpredicted as a bifunctional catalyst for air electrodes in proton conducting solid oxide electrochemical cells, J. Mater. Chem. A5 (2017) 12735−12739. https://doi.org/10.1039/C7TA03340K
Munoz-Garcia AB, Pavone M, First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fe1.5Mo0.5O6−δPerovskite, Chem. Mater. 28(2) (2016) 490–500. https://doi.org/10.1021/acs.chemmater.5b03262
Yang Y, Shi N, Xie Y, Li X, et al., K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells, Electrochim. Acta389 (2021) 138453. https://doi.org/10.1016/j.electacta.2021.138453
Cowin PI, Lan R, Petit CTGP, Wang H, Tao S, Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+xMo1-xO6−δ (x=0.2, 0.4, 0.6), J. Mater. Sci. 51 (2016) 4115–4124. https://doi.org/10.1007/s10853-016-9734-9
Qiao J, Chen W, Wang W, Wang Z, et al., The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6−δperovskite as cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources 331 (2016) 400−407. https://doi.org/10.1016/j.jpowsour.2016.09.082
Xu Z, Hu X, Wan Y, Xue S, et al., Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6−δ as electrodes for symmetrical solid oxide fuel cells, Electrochim. Acta 341 (2020) 136067. https://doi.org/10.1016/j.electacta.2020.136067
Tian X, Xie M, Ting L, Zhong-Liang Z, Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6−δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells, J. Inorg. Mater. 34(10) (2019) 1109−1114. https://doi.org/10.15541/jim20190067
Osinkin DA, Beresnev SM, Khodimchuk AV, Korzun IV, et al., Functional properties and electrochemical performance of Ca-doped Sr2-xCaxFe1.5Mo0.5O6-δ as anode for solid oxide fuel cells, J. Solid State Electr.23 (2019) 627–634. https://doi.org/10.1007/s10008-018-04169-2
Dai N, Wang Z, Jiang T, Feng J, et al., A new family of barium-doped Sr2Fe1.5Mo0.5O6−δ perovskites for application in intermediate temperature solid oxide fuel cells, J. Power Sources, 268 (2014) 176−182. https://doi.org/10.1016/j.jpowsour.2014.05.146
Kamlungsua K, Su PC, Moisture-dependent electrochemical characterization of Ba0.2Sr1.8Fe1.5Mo0.5O6-δ as the fuel electrode for solid oxide electrolysis cells (SOECs), Electrochim. Acta355 (2020) 136670. https://doi.org/10.1016/j.electacta.2020.136670
Tian X, Xie M, Ting L, Zhong-Liang Z, La3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells, J. Inorg. Mater.35(5) (2020) 617−622. https://doi.org/10.15541/jim20190225
Sun C, Bian L, Qi J, Yu W, et al., An Boosting CO2 directly electrolysis by electron doping in Sr2Fe1.5Mo0.5O6−δ double perovskite cathode, J. Power Sources 521 (2022) 230984. https://doi.org/10.1016/j.jpowsour.2022.230984
Ma J, Tao Z, Kou H, Fronzi M, et al., Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs, Ceram. Int. 46(3) (2020) 4000−4005. https://doi.org/10.1016/j.ceramint.2019.10.017
Qi H, Thomas T, Li W, Li W, et al., Reduced Thermal Expansion and Enhanced Redox Reversibility of La0.5Sr1.5Fe1.5Mo0.5O6−δ Anode Material for Solid Oxide Fuel Cells, ACS Appl. Energy Mater. 2(6) (2019) 4244–4254. https://doi.org/10.1021/acsaem.9b00494
Qi H, Exsolved nanoparticle decorated redox stable ceramic anode material with high performance for Solid Oxide Fuel Cells [dissertation]. Morgantown (USA): Statler College of Engineering and Mineral Resources; 2019. 135 p.
Yue W, Changsong C, Shiwei W, Zhongliang Z, Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis, J. Inorg. Mater.36(12) (2021) 1323–1329. https://doi.org/10.15541/jim20210206
Yang G, Feng J, Sun W, Dai N, et al., The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6−δ (x = 1.9−2.0) as intermediate-temperature solid oxide fuel cell cathodes, J. Power Sources 268 (2014) 771−777. https://doi.org/10.1016/j.jpowsour.2014.06.129
Osinkin DA, Khodimchuk AV, Antonova EP, Bogdanovich NM, Understanding the oxygen reduction kinetics on Sr2-xFe1.5Mo0.5O6−δ: Influence of strontium deficiency and correlation with the oxygen isotopic exchange data, Solid State Ion.374 (2022) 115818. https://doi.org/10.1016/j.ssi.2021.115818
Feng J, Qiao J, Wang W, Wang Z, et al., Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6−δ perovskites for solid oxide fuel cells, Electrochim. Acta 215 (2016) 592–599. https://doi.org/10.1016/j.electacta.2016.08.088
Pan X, Wang Z, He B, Wang S, et al., Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6−δ electrode for solid oxide fuel cell, Int. J. Hydrogen Energ.38 (2013) 4108−4115. https://doi.org/10.1016/j.ijhydene.2013.01.121
Xi X, Wang XW, Fan Y, Wang Q, Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles, J. Power Sources 482 (2021) 228981. https://doi.org/10.1016/j.jpowsour.2020.228981
Li Y, Singh M, Zhuang Z, Jing Y, et al., Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode, Sci. China Mater.64(5) (2021) 1114–1126. https://doi.org/10.1007/s40843-020-1531-7
Xu C, Zhen S, Ren R, Chen H, et al., Cu-doped Sr2Fe1.5Mo0.5O6−δ as a highly active cathode for solid oxide electrolytic cells, Chem. Commun.55 (2019) 8009−8012. https://doi.org/10.1039/C9CC03455B
Tian C, Cheng J, Yang J, A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6−δ for symmetrical solid oxide fuel cells, J. Mater. Sci-Mater. El.32 (2021) 1258–1264. https://doi.org/10.1007/s10854-020-04898-z
Wang SF, Hsu YF, Huang MS, Chang CW, et al., Characteristics of copper-doped SrFe0.75Mo0.25O3−δ ceramic as a cathode material for solid oxide fuel cells, Solid State Ion.296 (2016) 120–126. https://doi.org/10.1016/j.ssi.2016.09.004
Dai N, Feng J, Wang Z, Jiang T, et al., Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5Mo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs, J. Mater. Chem. A1 (2013) 14147−14153. https://doi.org/10.1039/C3TA13607H
Feng J, Yang G, Dai N, Wang Z, et al., Investigation into the effect of Fe-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ anodes for SOFCs, J. Mater. Chem. A2 (2014) 17628−17634. https://doi.org/10.1039/C4TA03216K
Xiao G, Wang S, Lin Y, Yang Z, et al., Ni-doped Sr2Fe1.5Mo0.5O6−δ as Anode Materials for Solid Oxide Fuel Cells, J. Electrochem. Soc.161(3) (2013) F305−F310. https://doi.org/10.1149/2.061403jes
Osinkin DA, Antonova EP, Shubin KS, Bogdanovich NM Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6−δ promising electrode for solid state electrochemical devices, Electrochim. Acta 369 (2021) 137673. https://doi.org/10.1016/j.electacta.2020.137673
Xiao G, Chen F, Ni modified ceramic anodes for direct-methane solid oxide fuel cells, Electrochem. Commun.13 (2011) 57–59. https://doi.org/10.1016/j.elecom.2010.11.012
Xiao G, Jin C, Liu Q, Heyden A, et al., Ni modified ceramic anodes for solid oxide fuel cells, J. Power Sources201 (2012) 43–48. https://doi.org/10.1016/j.jpowsour.2011.10.103
Lv H, Lin L, Zhang X, Gao D, et al., In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6−δ perovskite for efficient electrochemical CO2 reduction reaction, J. Mater. Chem. A7 (2019) 11967−11975. https://doi.org/10.1039/C9TA03065D
Wang Y, Xu J, Meng X, Liu T, et al., Ni infiltrated Sr2Fe1.5Mo0.5O6−δ-Ce0.8Sm0.2O1.9 electrode for methane assisted steam electrolysis process, Electrochem. Commun.79 (2017) 63−67. https://doi.org/10.1016/j.elecom.2017.04.018
Gong M, Dai H, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res.8 (2015) 23–39. https://doi.org/10.1007/s12274-014-0591-z
Li Y, Hu B, Xia C, Xu WQ, et al., A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance, J. Mater. Chem. A5 (2017) 20833−20842. https://doi.org/10.1039/C7TA05750D
Hou M, Sun W, Li P, Feng J, et al., Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ for intermediate temperature solid oxide fuel cells, J. Power Sources 272 (2014) 759−765. https://doi.org/10.1016/j.jpowsour.2014.09.043
Sun W, Li P, Xu C, Dong L, et al., Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources 343 (2017) 237−245. https://doi.org/10.1016/j.jpowsour.2017.01.063
Zhang L, Yin Y, Xu Y, Yu S, et al., Tailoring Sr2Fe1.5Mo0.5O6−δwith Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells, Sci. China Mater.65(6) (2022) 1485–1494. https://doi.org/10.1007/s40843-021-1935-5
Ren R, Wang Z, Meng X, Wang X, et al., Tailoring the Oxygen Vacancy to Achieve Fast Intrinsic Proton Transport in a Perovskite Cathode for Protonic Ceramic Fuel Cells, ACS Appl. Energy Mater. 3 (2020) 4914−4922. https://doi.org/10.1021/acsaem.0c00486
Sun K, Liu J, Feng J, Yuan H, et al., Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6−δ (X = Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell, J. Power Sources 365 (2017) 109−116. https://doi.org/10.1016/j.jpowsour.2017.08.083
Wan Y, Yang Y, Lu Y, Peng R, et al., A Strategy to Enhance the Catalytic Activity of Electrode Materials by Doping Bismuth for Symmetrical Solid Oxide Electrolysis Cells, ACS Appl. Energy Mater. 5(2) (2022) 2339–2348. https://doi.org/10.1021/acsaem.1c03822
Du Z, Zhao H, Li S, Zhang Y, et al., Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr2FeMo2/3Mg1/3O6−δ for Solid Oxide Fuel Cells, Adv. Energy Mater. 8(18) (2018) 1800062. https://doi.org/10.1002/aenm.201800062
Feng T, Niu B, Liu J, He T, Sr- and Mo-deficiency Sr1.95TiMo1-xO6−δ double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas, Int. J. Hydrogen Energ. 45 (2020) 23444−23454. https://doi.org/10.1016/j.ijhydene.2020.06.115
Niu B, Jin F, Zhang L, Shen P, et al., Performance of double perovskite symmetrical electrode materials Sr2TiFe1–xMoxO6–δ (x = 0.1, 0.2) for solid oxide fuel cells, Electrochim. Acta 263 (2018) 217−227. https://doi.org/10.1016/j.electacta.2018.01.062
Zhou Q, Cheng Y, Li W, Yang X, et al., Investigation of cobalt-free perovskite Sr2FeTi0.75Mo0.25O6–δ as new cathode for solid oxide fuel cells, Mater. Res. Bull.74 (2016) 129–133. https://doi.org/10.1016/j.materresbull.2015.09.023
Xu C, Zhang L, Sun W, Ren R, et al., Co-improving the electrocatalytic performance and H2S tolerance of a Sr2Fe1.5Mo0.5O6−δbased anode for solid oxide fuel cells, J. Mater. Chem. A (2022) Advance Article. https://doi.org/10.1039/D2TA03136A
Zheng K, Swierczek K, Polfus JM, Sunding MF, et al., Carbon Deposition and Sulfur Poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ Electrode Materials for Symmetrical SOFCs, J. Electrochem. Soc.162(9) (2015) F1078−F1087. https://doi.org/10.1149/2.0981509jes
Jiang Y, Yang Y, Xia C, Bouwmeester HJM, Sr2Fe1.4Mn0.1Mo0.5O6−δ perovskite cathode for highly efficient CO2electrolysis, J. Mater. Chem. A7 (2019) 22939−22949. https://doi.org/10.1039/C9TA07689A
Xu C, Sun K, Yang X, Ma M, et al., Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources 450 (2020) 227722. https://doi.org/10.1016/j.jpowsour.2020.227722
Lv H, Lin L, Zhang X, Li R, et al.,Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis, Nat. Commun.12 (2021) 5665. https://doi.org/10.1038/s41467-021-26001-8
Li B, He S, Li J, Yue X, et al., A Ce/Ru Codoped SrFeO3−δ Perovskite for a Coke-Resistant Anode of a Symmetrical Solid Oxide Fuel Cell, ACS Catal. 10(24) (2020) 14398–14409. https://doi.org/10.1021/acscatal.0c03554
Zhang S, Zhu K, Hu X, Peng R, et al., Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6−δ perovskite as a ceramic anode for solid oxide fuel cells, J. Mater. Chem. A9 (2021) 24336−24347. https://doi.org/10.1039/D1TA06196H
Gao J, Zhang Y, Wang X, Jia L, et al.,Nitrogen-doped Sr2Fe1.5Mo0.5O6−δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction, Mater. Today Energy, 20 (2021) 100695. https://doi.org/10.1016/j.mtener.2021.100695
Zhang Y, Zhu Z, Gu Y, Chen H, et al., Effect of Cl doping on the electrochemical performance of Sr2Fe1.5Mo0.5O6−δ cathode material for solid oxide fuel cells, Ceram. Int., 46 (2020) 22787–22796. https://doi.org/10.1016/j.ceramint.2020.06.046
Zhang L, Sun W, Xu C, Ren R, et al., Attenuating a metal–oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction, J. Mater. Chem. A8 (2020) 14091−14098. https://doi.org/10.1039/D0TA04820H
Zhang S, Jiang Y, Han H, Li Y, Perovskite Oxyfluoride Ceramic with In Situ Exsolved Ni–Fe Nanoparticles for Direct CO2 Electrolysis in Solid Oxide Electrolysis Cells, ACS Appl. Mater. Interfaces 14(25) (2022) 28854–28864. https://doi.org/10.1021/acsami.2c05324
Li Y, Li Y, Wan Y, Xie Y, et al., Perovskite Oxyfluoride Electrode Enabling Direct Electrolyzing Carbon Dioxide with Excellent Electrochemical Performances 9(3) (2018) 1803156. https://doi.org/10.1002/aenm.201803156
DOI: https://doi.org/10.15826/elmattech.2022.1.003
Copyright (c) 2022 Natalia M. Porotnikova, Denis A. Osinkin
This work is licensed under a Creative Commons Attribution 4.0 International License.