Cover Image

Molecular dynamic study of the applicability of silicene lithium ion battery anodes: A review

Alexander Y. Galashev

Abstract


Lithium-ion batteries (LIBs) are the main energy storage devices that have found wide application in the electrical, electronics, automotive and even aerospace industries. In practical applications, silicene has been put forward as an active anode material for LIBs. This is facilitated by its high theoretical capacitance, strength, and small volume change during lithiation. Thin-film materials containing two-layer silicene and intended for use in the LIB anode have been studied by the method of classical molecular dynamics. Among the important characteristics obtained is the fillability of the silicene anode (under the influence of an electric field), which was determined depending on the type of vacancy defects in silicene and the type of substrate used. Both metallic (Ag, Ni, Cu, Al) and non-metallic (graphite, silicon carbide) substrates are considered. The behavior of the self-diffusion coefficient of intercalated lithium atoms in a silicene channel as it is filled has been studied. Based on the construction of Voronoi polyhedra, the packing of lithium atoms and the state of the walls in the channel has been studied in detail. The change in the shape of silicene sheets, as well as the stresses in them caused by lithium intercalation, are analyzed. It has been established that two-layer silicene with monovacancies on a nickel substrate is the most optimum variant of the anode material. The results of this work may be useful in the development of new anode materials for new generation LIBs.


Keywords


anode; molecular dynamics; self-diffusion; silicene; stress; structure

Full Text:

PDF

References


Chen H, Hautier G, Jain A, Moore C, et al., Carbonophosphates: A new family of cathode materials for Li-ion batteries identified computationally, Chem. Mater. 24(11) (2012) 2009–2016. https://doi.org/10.1021/cm203243x

Kononova O, Huo H, He T, Rong Z, et al., Text-mined dataset of inorganic materials synthesis recipes, Sci. Data 6 (2019) 203. https://doi.org/10.6084/m9.figshare.9906608

Ferrari S, Loveridge M, Beattie SD, Jahn M, et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources 286 (2015) 25–46. https://doi.org/10.1016/j.jpowsour.2015.03.133

Li W, Christiansen TL, Li C, Zhou Y, et al., High-power lithium-ion microbatteries from imprinted 3D electrodes of sub10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte, Nano Energy 52 (2018) 431–440. https://doi.org/10.1016/j.nanoen.2018.08.019

Long J W, Dunn B, Rolison D R, White H S, 3D architectures for batteries and electrodes, Adv. Energy Mater. 10 (2020) 1–6. https://doi.org/10.1002/aenm.202002457

Song SW, Lee KC, Park HY, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride, J. Power Sources 328 (2016) 311–317. https://doi.org/10.1016/j.jpowsour.2016.07.114

Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung S-T, Bakenov Z, Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries, J. Mater. Chem. A 9 (2021) 15140–15178. https://doi.org/10.1039/D1TA02652F

Zhang T, He W, Zhang W, Wang T, et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries, Chem. Sci. 11(33) (2020) 8686-8707. https://doi.org/10.1039/D0SC03121F

Zhang Y, Zhai W, Hu X, Jiang Y, et al., Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes, Nano Res. 16(3) (2023) 4039–4048. https://doi.org/10.1007/s12274-022-4431-2

Zheng Y, Yao Y, Ou J, Li M, et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures, Chem. Soc. Rev. 49 (2020) 8790–8839. https://doi.org/10.1039/D0CS00305K

Chen CH, Xie S, Sperling E, Yang AS, et al., Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system, Solid State Ionics 167 (2004) 263–272. https://doi.org/10.1016/j.ssi.2004.01.008

Grazioli D, Zadin V, Brandell D, Simone A, Electrochemical-mechanical modeling of solid polymer electrolytes: Stress development and non-uniform electric current density in trench geometry microbatteries, Electrochem. Acta 296 (2019) 1142–1162. https://doi.org/10.1016/j.electacta.2018.07.146

Han F, Westover AS, Yue J, Fan X, et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4 (2019) 187–196. https://doi.org/10.1038/s41560-018-0312-z

Xia H, Wang HL, Xiao W, Lai MO, Lu L, Thin film Li electrolytes for all-solid-state micro-batteries, Int. J. Surf. Sci. Eng. 3 (2009) 23–43. https://doi.org/10.1504/IJSURFSE.2009.024360

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM, Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater. 11 (2021) 2002689. https://doi.org/10.1002/aenm.202002689

Xu RC, Xia XH, Zhang SZ, Xie D, et al., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta 284 (2018) 177–187. https://doi.org/10.1016/j.electacta.2018.07.191

Yan S, Yim C-H, Pankov V, Bauer M, et al., Perovskite solid-state electrolytes for lithium metal batteries, Batteries 7(4) (2021), 75. https://doi.org/10.3390/batteries7040075

Lu J, Li Y, Ding Y, Li-ion conductivity and electrochemical stability of A-site deficient perovskite-structured Li3x-yLa1-xAl1-yTiyO3 electrolytes, Mater. Res. Bull. 133 (2021) 111019. https://doi.org/10.1016/j.materresbull.2020.111019

Miyamoto K, Sasaki T, Nishi T, Itou Y, Takechi K, 3D-microbattery architectural design optimization using automatic geometry generator and transmission-line model, iScience 23 (2020) 101317. https://doi.org/10.1016/j.isci.2020.101317

Zadin V, Brandell D, Modelling polymer electrolytes for 3D-microbatteries using finite element analysis, Electrochim. Acta, 57 (2011) 237–243. https://doi.org/10.1016/j.electacta.2011.03.026

Boukamp BA, Lesh GC, Huggins RA, All‐solid lithium electrodes with mixed‐conductor matrix, J. Electrochem. Soc. 128 (1981) 725–729. https://doi.org/10.1149/1.2127495

Liang B, Liu Y, Xu Y, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources 267 (2014) 469–490. https://doi.org/10.1016/j.jpowsour.2014.05.096

Wu H, Cui Y, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429. https://doi.org/10.1016/j.nantod.2012.08.004

Tao L, Cinquanta E, Chiappe D, Grazianetti C, et al., Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227–231. https://doi.org/10.1038/nnano.2014.325

Cinquanta E, Scalise E, Chiappe D, Grazianetti C, et al., Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet, J. Phys. Chem. C 117 (2013) 16719–16724. https://doi.org/10.1021/jp405642g

Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P, Dimoulas A, Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111), Appl. Phys. Lett. 103 (2013) 231604. https://doi.org/10.1063/1.4841335

Du Y, Zhuang J, Wang J, Li Z, et al., Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation, Sci. Adv. 2(7) (2016) e1600067. https://doi.org/ 10.1126/sciadv.1600067

Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12 (2012) 3507–3511. https://doi.org/10.1021/nl301047g

Jaroch T, Zdyb R, Temperature-dependent growth and evolution of silicene on Au ultrathin films—LEEM and LEED studies, Materials 15 (2022) 1610. https://doi.org/10.3390/ma15041610

Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H-J, Buckled silicene formation on Ir(111), Nano Lett. 13 (2013) 685–690. https://doi.org/10.1021/nl304347w

Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108 (2012) 245501. https://doi.org/10.1103/PhysRevLett.108.245501

Aizawa T, Suehara S, Otani S, Silicene on zirconium carbide (111), Phys. Chem. C 118 (2014) 23049–23057. https://doi.org/10.1021/jp505602c

Chiappe D, Scalise E, Cinquanta E, Grazianetti C, et al., Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface, Adv. Mater. 26 (2014) 2096-2101. https://doi.org/10.1002/adma.201304783

De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, et al., Formation of silicene nanosheets on graphite, ACS Nano 10 (2016) 11163–11171. https://doi.org/10.1021/acsnano.6b06198

Tritsaris G A, Kaxiras E, Meng S, Wang E, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5) (2013) 2258–2263. http://dx.doi.org/10.1021/nl400830u

De Souza LA, Monteiro de Castro G, Marques LF, Belchior JC, A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries, J. Mol. Graph. Model. 108 (2021) 107998. https://doi.org/10.1016/j.jmgm.2021.107998

Tritsaris G A, Zhao K, Okeke O U, Kaxiras E, Diffusion of lithium in bulk amorphous silicon: A theoretical study, J. Phys. Chem. C 116(42) (2012) 22212–22216. http://dx.doi.org/10.1021/jp307221q

Galashev AE, Zaikov YuP, Vladykin RG, Effect of electric field on lithium ion in silicene channel. Computer experiment, Rus. J. Electrochem. 52(10) (2016) 966–974. https://doi.org/10.1134/S1023193516100049

Osborn TH, Farajian AA, Stability of lithiated silicene from first principles, J. Phys. Chem. C, 116 (2012) 22916–22920. https://doi.org/10.1021/jp306889x

Tersoff J, Modelng solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B: Condens. Matter. Mater. Phys. 39 (1989) 5566–5568. https://doi.org/10.1103/physrevb.39.5566

Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835. https://doi.org/10.1016/j.jocs.2022.101835

Galashev AY, Ivanichkina K A, Rakhmanova O R, Advanced hybrid-structured anodes for lithium-ion batteries, Comp. Mater. Sci 200 (2021) 110771. https://doi.org/10.1016/j.commatsci.2021.110771

Galashev AY, Ivanichkina KA. Computer study of atomic mechanisms of intercalation/ deintercalation of Li ions in a silicene anode on an Ag (111) substrate, J. Electrochem Soc. 165 (2018) A1788–A1796. https://doi.org/10.1149/2.0751809jes

Kawahara K, Shirasawa T, Arafune R, Lin C-L, et al., Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction, Surf. Sci. 623 (2014) 25–28. https://doi.org/10.1016/j.susc.2013.12.013

Grazianetti C, Molle A, Engineering epitaxial silicene on functional substrates for nanotechnology, Research (Wash D C). 2019 (2019) 8494606. https://doi.org/10.34133/2019/8494606

Galashev AE, Rakhmanova OR, Numerical simulation of heating an aluminum film on two-layer grapheme, High Temp. 52 (2014) 374–380. https://doi.org/10.1134/S0018151X14030110

Galashev AY, Ivanichkina KA, Computer test of a new silicene anode for lithium-ion battery, ChemElectroChem 6(5) (2019) 1525–1535. https://doi.org/110.1002/celc.201900119

Liu H, Feng H, Du Y, Chen J, et al., Point defects in epitaxial silicene on Ag(111) surfaces, 2D Mater. 3 (2016) 025034. https://doi.org/1010.1088/2053-1583/3/2/025034

Subramaniyan AK, Sun CT, Continuum interpretation of virial stress in molecular simulations, Int. J. Solids and Struct., 45 (2008) 4340–4346. https://doi.org/10.1016/j.ijsolstr.2008.03.016

Plimpton S, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039

Takeda K, Shiraishi K, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50 (1994) 14916–14922. https://doi.org/10.1103/PhysRevB.50.14916

Vogt P, De Padova P, Quaresima C, Avila J, et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501

Galashev AY, Vorob’ev AS, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping, Int. J. Mol. Sci. 24 (2023) 2864. https://doi.org/10.3390/ijms24032864

Galashev AY, Computer development of silicene anodes for litium-ion batteries: A review, Electrochem. Mater. Technol. 1 (2022) 20221005. https://doi.org/10.15826/elmattech.2022.1.005

Galashev AE, Ivanichkina K A, Computer modeling of lithium intercalation and deintercalation in a silicene channel, Rus. J. Phys. Chem. A 93(4) (2019) 765–769. https://doi.org/10.1134/S0036024419040137

Liao D, Kuang X, Xiang J, Wang X, A Silicon Anode Material with Layered Structure for the Lithium-ion Battery, J. Phys.: Conf. Ser. 986 (2018) 012024. https://doi.org/10.1088/1742-6596/986/1/012024

Zhang X, Wang D, Qiu X, Ma Y, Kong D, et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation, Nat. Commun. 11 (2020) 3826. https://doi.org/10.1038/s41467-020-17686-4

Galashev AY, Vorob’ev AS, First principle modeling of a silicene anode for lithium ion batteries, Electrochim. Acta 378 (2021) 138143. https://doi.org/10.1016/j.electacta.2021.138143

Xu S, Fan X, Liu J, Singh DJ, Jiang Q, Zheng W, Adsorption of Li on single-layer silicene for anodes of Li-ion batteries, Phys. Chem. Chem. Phys. 20 (2020) 8887−8896. https://doi.org/10.1039/C7CP08036K

Galashev AY, Ivanichkina KA, Silicene anodes for lithium-ion batteries on metal substrates, J. Electrochem. Soc. 167 (2020) 050510. https://orcid.org/10.1149/1945-7111/ab717a

Juan J, Fernández-Werner L, Bechthold P, Villarreal J, Gaztañaga F, Charged lithium adsorption on pristine and defective silicene: a theoretical study, J. Phys.: Condens. Matter. 34 (2022) 245001. https://doi.org/10.1088/1361-648X/ac630a

Galashev AE, Rakhmanova OR, Zaikov YuP, Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment, Phys. Solid State 58 (2016) 1850–1857. https://doi.org/10.1134/S1063783416090146

Yu R, Zhai P, Li G, Liu L, Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si, J. Electron. Mater. 41 (2012) 1465–1469. https://doi.org/10.1007/s11664-012-1916-x

Galashev AE, Ivanichkina KA, Nanoscale simulation of the lithium ion interaction with defective silicene, Phys. Lett. A 381 (2017) 3079–3083. https://doi.org/10.1016/j.physleta.2017.07.040

Chiang K-N, Chou C-Y, Wu C-J, Huang C-J, Yew M-C, Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential, Comp. Model. Eng. Sci. 37(1) (2008) 85–96. https://doi.org/10.3970/cmes.2008.037.085

Das SK, Roy D, Sengupta S, Volume change in some substitutional alloys using Morse potential function, J. Phys. F: Metal. Phys. 7 (1977) 5–14. https://doi.org/10.1088/0305-4608/7/1/011

Galashev AE, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment, Phys. Solid State 59 (2017) 1242–1252. https://doi.org/10.1134/S1063783417060087

Galashev AE, Ivanichkina KA, Rakhmanova OR, Zaikov YuP, Physical aspects of the lithium ion interactionwith the imperfect silicene located on a silver substrate, Letters on Materials 8(4) (2018) 463–467. https://doi.org/ 10.22226/2410-3535-2018-4-463-467

Galashev AY, Ivanichkina KA, Computer study of silicene applicability in electrochemical devices, J. Struct. Chem. 61 (2020) 659–667. https://orcid.org/10.1134/S0022476620040204

Galashev AY, Ivanichkina KA, Computer study of silicene channel structure based on the transport of Li+, Rus. J. Phys. Chem. A 2021 95(4) (2021) 724–729. https://doi.org/10.1134/S0036024421040063

Lee JK, Shin J-H, Lee H, Yoon WY, Characterization of nano silicon on nanopillar-patterned nickel substrate for lithium ion batteries, J. Electrochem. Soc., 161(10) (2014) A1480–A1485. https://doi.org/10.1149/2.0131410jes

Lalmi B, Girardeaux C, Portavoce A, Ottaviani C, et al., Formation and stability of a two-dimensional nickel silicide on Ni (111): an Auger, LEED, STM, and high-resolution photoemission study, Phys. Rev. B 85 (2012) 245306. https://doi.org/10.1103/PhysRevB.85.245306

Galashev AY, Zaikov YuP, New Si–Cu and Si–Ni anode materials for lithium-ion batteries, J. Appl. Electrochem. 49 (2019) 1027–1034. https://doi.org/10.1007/s10800-019-01344-9

Galashev AY, Computational investigation of silicene/nickel anode for lithium-ion battery, Solid State Ionics 357 (2020) 115463. https://doi.org/10.1016/j.ssi.2020.115463

Galashev AY, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, et al., Improved lithium-ion batteries and their communication with hydrogen power, Int. J. Hydrogen Energy, 46(32) (2021) 17019–17036. https://doi.org/10.1016/j.ijhydene.2020.11.225

Galashev AY, Rakhmanova OR, Stability of a two-layer silicene on a nickel substrate upon intercalation of lithium, Glass Phys. Chem. 46(4) (2020) 321–328. https://doi.org/10.1134/S1087659620040069

Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835. https://doi.org/10.1016/j.jocs.2022.101835

Le MQ, Nguyen DT, The role of defects in the tensile properties of silicene, Appl. Phys. A 118 (2014) 1437–1445. https://doi.org/10.1007/s00339-014-8904-3

Rasmussen AA, Jensen JAD, Horsewell A, Somers MAJ, Microstructure in electrodeposited copper layers; the role of the substrate, Electrochim. Acta 47 (2001) 67–74. https://doi.org/10.1016/S0013-4686(01)00583-7

Shen YF, Lu L, Lu QH, Jin ZH, Lu K, Tensile properties of copper with nano-scale twins, Scripta Mater. 59 (2005) 989–994. https://doi.org/10.1016/j.scriptamat.2005.01.033

Kaloyeros AE, Eisenbraun E, Ultrathin diffusion barriers/liners for gigascale copper metallization, Annu. Rev. Mater. Sci. 30 (2000) 363–385. https://doi.org/10.1146/annurev.matsci.30.1.363

Martella C, Faraone G, Alam MH, Taneja D, et al., Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020) 2004546. https://doi.org/10.1002/adfm.202004546

Galashev AY, Ivanichkina KA, Computational investigation of a promising Si–Cu anode material, Phys.Chem.Chem.Phys. 21 (2019) 12310. https://doi.org/1010.1039/C9CP01571J

Galashev AE, Rakhmanova OR, Isakov AV, Molecular dynamic behavior of lithium atoms in a flat silicene pore on a copper substrate, Rus. J. Phys. Chem. B 14(4) (2020) 705–713. https://doi.org/10.1134/S1990793120040053

Galashev AY, Structure of water clusters with captured methane molecules, Rus. J. Phys. Chem. B 8 (2014) 793–800. https://doi.org/10.1134/S1990793114110049

Chavez-Castillo MR, Rodrıguez-Mezab MA, Meza-Montes L, Size, vacancy and temperature effects on Young’s modulus of silicone nanoribbons, RSC Adv. 5 (2015) 96052–96061. https://doi.org/10.1039/C5RA15312C

Maranchi JP, Hepp AF, Kumta PN, High capacity reversible silicon thin film anodes lithium ion batteries, Electrochem. Solid-State Lett. 6 (2003) A198–A201. https://doi.org/10.1149/1.1596918

Maranchi JP, Hepp AF, Evans AG, Nuhfer NT, Kumta PN, Interfacial properties of the a-Si/Cu: active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc. 153 (2006) A1246–A1253. https://doi.org/110.1149/1.2184753

Graetz J, Ahn CC, Yazami R, Fultz B, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6 (2003) A194–A197. https://doi.org/10.1149/1.1596917

Yao NP, Heredy LA, Saunders RC, Emf measurements of electrochemically prepared lithium‐aluminum alloy, J. Electrochem. Soc. 118 (1971) 1039. https://doi.org/10.1149/1.2408242

Ji B, Zhang F, Sheng M, Tong X, Tang Y, A novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density, Adv. Mater. 29 (2017) 1604219. https://doi.org/10.1002/adma.201604219

Li S, Niu J, Zhao YC, So KP, et al., High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity, Nature Commun. 6 (2015) 7872. https://doi.org/10.1038/ncomms8872

Galashev AE, Ivanichkina KA, Computer study of the properties of silicon thin films on graphite, Rus. J. Phys. Chem. A, 91(12) (2017) 2445–2449. https://doi.org/10.1134/S003602441712007X

Galashev AE, Rakhmanova OR, Ivanichkina KA, Graphene and graphite supports for silicene stabilization: a computation study, J. Struct. Chem. 59(4) (2018) 877–883. https://doi.org/10.1134/S0022476618040194

Galashev AE, Ivanichkina KA, Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion, Phys. Solid State 61(2) (2019) 233–243. https://doi.org/10.1134/S1063783419020136

Skripov VP, Galashev AE, The structure of simple liquids, Rus. Chem. Rev. 52 (1983) 97–116. https://doi.org/10.1070/RC1983v052n02ABEH002792

Roman RE, Cranford SW, Mechanical properties of silicene, Comput. Mater. Sci. 82 (2014) 50–55. https://doi.org/10.1016/j.commatsci.2013.09.030

Huang XD, Zhang F, Gan XF, Huang QA, et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode, RSC Adv. 8 (2018) 5189–5196. https://doi.org/10.1039/C7RA12463E

Majid A, Fatima A, Khan SU-D, Khan S, Layered silicon carbide: a novel anode material for lithium ion batteries, New J. Chem. 45 (2021) 19105–19117. https://doi.org/10.1039/D1NJ04261K

Ibrahim N, Mohammed L, Ahmed R, Graphene-like silicon carbide layer for potential safe anode lithium ion battery: A first principle study, Science Talks 4 (2022) 100075. https://doi.org/10.1016/j.sctalk.2022.100075

Galashev AY, Rakhmanova OR, Two-layer silicene on the SiC substrate: Lithiation investigation in the molecular dynamics experiment, ChemPhysChem 23(18) (2022) e202200250. https://doi.org/10.1002/cphc.202200250

Galashev AE, Computer test of a silicene/silicon carbide anode for a lithium ion battery, Rus. J. Phys. Chem. A 96(12) (2022) 2757–2762. https://doi.org/10.1134/S0036024422120123

Mortazavi B, Dianat A, Cuniberti G, Rabczuk T, Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta 2013 (2016) 865–870. http://dx.doi.org/10.1016/j.electacta.2016.08.027

Galashev AE, Computer simulation of a silicene anode on a silicene carbide substrate, Rus. J. Phys. Chem. B 17(1) (2023) 113–121. https://doi.org/10.1134/S1990793123010190

Galashev AY, Vorob’ev AS, Electronic properties and structure of silicene on Cu and Ni substrates, Materials 15 (2022) 3863. https:// doi.org/10.3390/ma15113863

Galashev AY, Vorob’ev AS, DFT study of silicene on metal (Al, Ag, Au) substrates of various thicknesses, Phys. Lett. A 408(27) (2021) 127487. https://doi.org/10.1016/j.physleta.2021.127487

Galashev AY, Vorob’ev AS, An ab initio study of lithization of two-dimensional silicon–carbon anode material for lithium-ion batteries, Materials 14 (2021) 6649. https://doi.org/10.3390/ma14216649

Galashev AY, Vorob’ev AS, An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide, Physica E: Low Dimens. Syst. Nanostruct. 138 (2022) 115120. https://doi.org/10.1016/j.physe.2021.115120

Fatima A, Majid A, Haider S, Akhtar MS, Alkhedher M, First principles study of layered silicon carbide as anode in lithium ion battery, Quantum Chem. 122(11) (2022) e26895. https://doi.org/10.1002/qua.26895

Leonova AM, Bashirov OA, Leonova NM, Lebedev AS, et al., Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources, Appl. Sci. 13(2) (2023) 901. https://doi.org/10.3390/app13020901

Liao HW, Karki K, Zhang Y, Cumings J, Wang YH, Interfacial mechanics of carbon nanotube@amorphous-Si coaxial nanostructures, Adv. Mater., 23 (2011) 4318–4322. https://doi.org/10.1002/adma.201101762

Simon GK, Maruyama B, Durstock MF, Burton DJ, Goswami T, Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes, J. Power Sources 196 (2011) 10254–10257. https://doi.org/10.1016/j.jpowsour.2011.08.058

Etacheri V, Geiger U, Gofer Y, Roberts GA, et al., Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir 28 (2012) 6175–6184. https://doi.org/10.1021/la300306v

Du Y, Zhuang J, Liu H, Xu X, et al., Quasi-freestanding epitaxial silicene by oxygen intercalation, ACS Nano 8 (2014), 10019. https://doi.org/10.1021/nn504451t

Kanno M, Arafune R, Lin CL, Minamitani E, et al., Electronic decoupling by h-BN layer between silicene and Cu(111): a DFT-based analysis New J. Phys. 16 (2014) 105019. https://doi.org/10.1088/1367-2630/16/10/105019

Dávila ME, Le Lay G, Silicene: Genesis, remarkable discoveries, and legacy, Materialstoday Adv. 16 (2022) 100312. https://doi.org/10.1016/j.mtadv.2022.100312

Martella C, Faraone G, Alam MH, Taneja D, et al. Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020), 2004546. https://doi.org/10.1002/adfm.202004546

Sahoo S, Sinha A, Koshi NA, Lee S-C, et al., Silicene: an excellent material for flexible electronics, J. Phys. D Appl. Phys. 55 (2022), 425301. https://doi.org/10.1088/1361-6463/ac8080

An Y, Tian Y, Wei C, Zhang Y, et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion, Energy Storage Mater. 32 (2020) 115–150. https://doi.org/10.1016/j.ensm.2020.07.006

Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M, Two-dimensional materials in biomedical, biosensing and sensing applications, Chem. Soc. Rev. 50 (2021) 619–657. https://doi.org/10.1039/D0CS00150C

Priimägi P, Kasemägi H, Aabloo A, Brandell D, Zadin V, Thermal simulations of polymer electrolyte 3D Li-microbatteries, Electrochim. Acta 244 (2017) 129–138. https://doi.org/10.1016/j.electacta.2017.05.055

Su X, Guo K, Ma T, Tamirisa, P, et al., Deformation and chemomechanical degradation at solid electrolyte-electrode interfaces, ACS Energy Lett. 2(8) (2017) 1729–1733. https://doi.org/10.1021/acsenergylett.7b00481

Natsiavas PP, Weinberg K, Rosato D, Ortiz M, Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J. Mech. Phys. Solid. 95 (2016) 92–111. https://doi.org/10.1016/j.jmps.2016.05.007

Guo M, Yuan C, Zhang T, Yu X, Solid-state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism, Small 18(43) (2022) 2106981. https://doi.org/10.1002/smll.202106981

Alipour M, Ziebert C, Conte FV, Kizilel R, A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells, Batteries 6(3) (2020) 35. https://doi.org/10.3390/batteries6030035

Galashev AY, Suzdaltsev AV, Ivanichkina K A, Design of the high performance microbattery with silicene anode, Mater. Sci. & Eng. B 261 (2020) 114718. https://doi.org/10.1016/j.mseb.2020.114718




DOI: https://doi.org/10.15826/elmattech.2023.2.012

Copyright (c) 2023 Alexander Y. Galashev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.