Molecular dynamic study of the applicability of silicene lithium ion battery anodes: A review
Abstract
Lithium-ion batteries (LIBs) are the main energy storage devices that have found wide application in the electrical, electronics, automotive and even aerospace industries. In practical applications, silicene has been put forward as an active anode material for LIBs. This is facilitated by its high theoretical capacitance, strength, and small volume change during lithiation. Thin-film materials containing two-layer silicene and intended for use in the LIB anode have been studied by the method of classical molecular dynamics. Among the important characteristics obtained is the fillability of the silicene anode (under the influence of an electric field), which was determined depending on the type of vacancy defects in silicene and the type of substrate used. Both metallic (Ag, Ni, Cu, Al) and non-metallic (graphite, silicon carbide) substrates are considered. The behavior of the self-diffusion coefficient of intercalated lithium atoms in a silicene channel as it is filled has been studied. Based on the construction of Voronoi polyhedra, the packing of lithium atoms and the state of the walls in the channel has been studied in detail. The change in the shape of silicene sheets, as well as the stresses in them caused by lithium intercalation, are analyzed. It has been established that two-layer silicene with monovacancies on a nickel substrate is the most optimum variant of the anode material. The results of this work may be useful in the development of new anode materials for new generation LIBs.
Keywords
Full Text:
PDFReferences
Chen H, Hautier G, Jain A, Moore C, et al., Carbonophosphates: A new family of cathode materials for Li-ion batteries identified computationally, Chem. Mater. 24(11) (2012) 2009–2016. https://doi.org/10.1021/cm203243x
Kononova O, Huo H, He T, Rong Z, et al., Text-mined dataset of inorganic materials synthesis recipes, Sci. Data 6 (2019) 203. https://doi.org/10.6084/m9.figshare.9906608
Ferrari S, Loveridge M, Beattie SD, Jahn M, et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources 286 (2015) 25–46. https://doi.org/10.1016/j.jpowsour.2015.03.133
Li W, Christiansen TL, Li C, Zhou Y, et al., High-power lithium-ion microbatteries from imprinted 3D electrodes of sub10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte, Nano Energy 52 (2018) 431–440. https://doi.org/10.1016/j.nanoen.2018.08.019
Long J W, Dunn B, Rolison D R, White H S, 3D architectures for batteries and electrodes, Adv. Energy Mater. 10 (2020) 1–6. https://doi.org/10.1002/aenm.202002457
Song SW, Lee KC, Park HY, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride, J. Power Sources 328 (2016) 311–317. https://doi.org/10.1016/j.jpowsour.2016.07.114
Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung S-T, Bakenov Z, Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries, J. Mater. Chem. A 9 (2021) 15140–15178. https://doi.org/10.1039/D1TA02652F
Zhang T, He W, Zhang W, Wang T, et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries, Chem. Sci. 11(33) (2020) 8686-8707. https://doi.org/10.1039/D0SC03121F
Zhang Y, Zhai W, Hu X, Jiang Y, et al., Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes, Nano Res. 16(3) (2023) 4039–4048. https://doi.org/10.1007/s12274-022-4431-2
Zheng Y, Yao Y, Ou J, Li M, et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures, Chem. Soc. Rev. 49 (2020) 8790–8839. https://doi.org/10.1039/D0CS00305K
Chen CH, Xie S, Sperling E, Yang AS, et al., Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system, Solid State Ionics 167 (2004) 263–272. https://doi.org/10.1016/j.ssi.2004.01.008
Grazioli D, Zadin V, Brandell D, Simone A, Electrochemical-mechanical modeling of solid polymer electrolytes: Stress development and non-uniform electric current density in trench geometry microbatteries, Electrochem. Acta 296 (2019) 1142–1162. https://doi.org/10.1016/j.electacta.2018.07.146
Han F, Westover AS, Yue J, Fan X, et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4 (2019) 187–196. https://doi.org/10.1038/s41560-018-0312-z
Xia H, Wang HL, Xiao W, Lai MO, Lu L, Thin film Li electrolytes for all-solid-state micro-batteries, Int. J. Surf. Sci. Eng. 3 (2009) 23–43. https://doi.org/10.1504/IJSURFSE.2009.024360
Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM, Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater. 11 (2021) 2002689. https://doi.org/10.1002/aenm.202002689
Xu RC, Xia XH, Zhang SZ, Xie D, et al., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta 284 (2018) 177–187. https://doi.org/10.1016/j.electacta.2018.07.191
Yan S, Yim C-H, Pankov V, Bauer M, et al., Perovskite solid-state electrolytes for lithium metal batteries, Batteries 7(4) (2021), 75. https://doi.org/10.3390/batteries7040075
Lu J, Li Y, Ding Y, Li-ion conductivity and electrochemical stability of A-site deficient perovskite-structured Li3x-yLa1-xAl1-yTiyO3 electrolytes, Mater. Res. Bull. 133 (2021) 111019. https://doi.org/10.1016/j.materresbull.2020.111019
Miyamoto K, Sasaki T, Nishi T, Itou Y, Takechi K, 3D-microbattery architectural design optimization using automatic geometry generator and transmission-line model, iScience 23 (2020) 101317. https://doi.org/10.1016/j.isci.2020.101317
Zadin V, Brandell D, Modelling polymer electrolytes for 3D-microbatteries using finite element analysis, Electrochim. Acta, 57 (2011) 237–243. https://doi.org/10.1016/j.electacta.2011.03.026
Boukamp BA, Lesh GC, Huggins RA, All‐solid lithium electrodes with mixed‐conductor matrix, J. Electrochem. Soc. 128 (1981) 725–729. https://doi.org/10.1149/1.2127495
Liang B, Liu Y, Xu Y, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources 267 (2014) 469–490. https://doi.org/10.1016/j.jpowsour.2014.05.096
Wu H, Cui Y, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429. https://doi.org/10.1016/j.nantod.2012.08.004
Tao L, Cinquanta E, Chiappe D, Grazianetti C, et al., Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227–231. https://doi.org/10.1038/nnano.2014.325
Cinquanta E, Scalise E, Chiappe D, Grazianetti C, et al., Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet, J. Phys. Chem. C 117 (2013) 16719–16724. https://doi.org/10.1021/jp405642g
Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P, Dimoulas A, Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111), Appl. Phys. Lett. 103 (2013) 231604. https://doi.org/10.1063/1.4841335
Du Y, Zhuang J, Wang J, Li Z, et al., Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation, Sci. Adv. 2(7) (2016) e1600067. https://doi.org/ 10.1126/sciadv.1600067
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12 (2012) 3507–3511. https://doi.org/10.1021/nl301047g
Jaroch T, Zdyb R, Temperature-dependent growth and evolution of silicene on Au ultrathin films—LEEM and LEED studies, Materials 15 (2022) 1610. https://doi.org/10.3390/ma15041610
Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H-J, Buckled silicene formation on Ir(111), Nano Lett. 13 (2013) 685–690. https://doi.org/10.1021/nl304347w
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108 (2012) 245501. https://doi.org/10.1103/PhysRevLett.108.245501
Aizawa T, Suehara S, Otani S, Silicene on zirconium carbide (111), Phys. Chem. C 118 (2014) 23049–23057. https://doi.org/10.1021/jp505602c
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, et al., Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface, Adv. Mater. 26 (2014) 2096-2101. https://doi.org/10.1002/adma.201304783
De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, et al., Formation of silicene nanosheets on graphite, ACS Nano 10 (2016) 11163–11171. https://doi.org/10.1021/acsnano.6b06198
Tritsaris G A, Kaxiras E, Meng S, Wang E, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5) (2013) 2258–2263. http://dx.doi.org/10.1021/nl400830u
De Souza LA, Monteiro de Castro G, Marques LF, Belchior JC, A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries, J. Mol. Graph. Model. 108 (2021) 107998. https://doi.org/10.1016/j.jmgm.2021.107998
Tritsaris G A, Zhao K, Okeke O U, Kaxiras E, Diffusion of lithium in bulk amorphous silicon: A theoretical study, J. Phys. Chem. C 116(42) (2012) 22212–22216. http://dx.doi.org/10.1021/jp307221q
Galashev AE, Zaikov YuP, Vladykin RG, Effect of electric field on lithium ion in silicene channel. Computer experiment, Rus. J. Electrochem. 52(10) (2016) 966–974. https://doi.org/10.1134/S1023193516100049
Osborn TH, Farajian AA, Stability of lithiated silicene from first principles, J. Phys. Chem. C, 116 (2012) 22916–22920. https://doi.org/10.1021/jp306889x
Tersoff J, Modelng solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B: Condens. Matter. Mater. Phys. 39 (1989) 5566–5568. https://doi.org/10.1103/physrevb.39.5566
Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835. https://doi.org/10.1016/j.jocs.2022.101835
Galashev AY, Ivanichkina K A, Rakhmanova O R, Advanced hybrid-structured anodes for lithium-ion batteries, Comp. Mater. Sci 200 (2021) 110771. https://doi.org/10.1016/j.commatsci.2021.110771
Galashev AY, Ivanichkina KA. Computer study of atomic mechanisms of intercalation/ deintercalation of Li ions in a silicene anode on an Ag (111) substrate, J. Electrochem Soc. 165 (2018) A1788–A1796. https://doi.org/10.1149/2.0751809jes
Kawahara K, Shirasawa T, Arafune R, Lin C-L, et al., Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction, Surf. Sci. 623 (2014) 25–28. https://doi.org/10.1016/j.susc.2013.12.013
Grazianetti C, Molle A, Engineering epitaxial silicene on functional substrates for nanotechnology, Research (Wash D C). 2019 (2019) 8494606. https://doi.org/10.34133/2019/8494606
Galashev AE, Rakhmanova OR, Numerical simulation of heating an aluminum film on two-layer grapheme, High Temp. 52 (2014) 374–380. https://doi.org/10.1134/S0018151X14030110
Galashev AY, Ivanichkina KA, Computer test of a new silicene anode for lithium-ion battery, ChemElectroChem 6(5) (2019) 1525–1535. https://doi.org/110.1002/celc.201900119
Liu H, Feng H, Du Y, Chen J, et al., Point defects in epitaxial silicene on Ag(111) surfaces, 2D Mater. 3 (2016) 025034. https://doi.org/1010.1088/2053-1583/3/2/025034
Subramaniyan AK, Sun CT, Continuum interpretation of virial stress in molecular simulations, Int. J. Solids and Struct., 45 (2008) 4340–4346. https://doi.org/10.1016/j.ijsolstr.2008.03.016
Plimpton S, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039
Takeda K, Shiraishi K, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50 (1994) 14916–14922. https://doi.org/10.1103/PhysRevB.50.14916
Vogt P, De Padova P, Quaresima C, Avila J, et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
Galashev AY, Vorob’ev AS, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping, Int. J. Mol. Sci. 24 (2023) 2864. https://doi.org/10.3390/ijms24032864
Galashev AY, Computer development of silicene anodes for litium-ion batteries: A review, Electrochem. Mater. Technol. 1 (2022) 20221005. https://doi.org/10.15826/elmattech.2022.1.005
Galashev AE, Ivanichkina K A, Computer modeling of lithium intercalation and deintercalation in a silicene channel, Rus. J. Phys. Chem. A 93(4) (2019) 765–769. https://doi.org/10.1134/S0036024419040137
Liao D, Kuang X, Xiang J, Wang X, A Silicon Anode Material with Layered Structure for the Lithium-ion Battery, J. Phys.: Conf. Ser. 986 (2018) 012024. https://doi.org/10.1088/1742-6596/986/1/012024
Zhang X, Wang D, Qiu X, Ma Y, Kong D, et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation, Nat. Commun. 11 (2020) 3826. https://doi.org/10.1038/s41467-020-17686-4
Galashev AY, Vorob’ev AS, First principle modeling of a silicene anode for lithium ion batteries, Electrochim. Acta 378 (2021) 138143. https://doi.org/10.1016/j.electacta.2021.138143
Xu S, Fan X, Liu J, Singh DJ, Jiang Q, Zheng W, Adsorption of Li on single-layer silicene for anodes of Li-ion batteries, Phys. Chem. Chem. Phys. 20 (2020) 8887−8896. https://doi.org/10.1039/C7CP08036K
Galashev AY, Ivanichkina KA, Silicene anodes for lithium-ion batteries on metal substrates, J. Electrochem. Soc. 167 (2020) 050510. https://orcid.org/10.1149/1945-7111/ab717a
Juan J, Fernández-Werner L, Bechthold P, Villarreal J, Gaztañaga F, Charged lithium adsorption on pristine and defective silicene: a theoretical study, J. Phys.: Condens. Matter. 34 (2022) 245001. https://doi.org/10.1088/1361-648X/ac630a
Galashev AE, Rakhmanova OR, Zaikov YuP, Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment, Phys. Solid State 58 (2016) 1850–1857. https://doi.org/10.1134/S1063783416090146
Yu R, Zhai P, Li G, Liu L, Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si, J. Electron. Mater. 41 (2012) 1465–1469. https://doi.org/10.1007/s11664-012-1916-x
Galashev AE, Ivanichkina KA, Nanoscale simulation of the lithium ion interaction with defective silicene, Phys. Lett. A 381 (2017) 3079–3083. https://doi.org/10.1016/j.physleta.2017.07.040
Chiang K-N, Chou C-Y, Wu C-J, Huang C-J, Yew M-C, Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential, Comp. Model. Eng. Sci. 37(1) (2008) 85–96. https://doi.org/10.3970/cmes.2008.037.085
Das SK, Roy D, Sengupta S, Volume change in some substitutional alloys using Morse potential function, J. Phys. F: Metal. Phys. 7 (1977) 5–14. https://doi.org/10.1088/0305-4608/7/1/011
Galashev AE, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment, Phys. Solid State 59 (2017) 1242–1252. https://doi.org/10.1134/S1063783417060087
Galashev AE, Ivanichkina KA, Rakhmanova OR, Zaikov YuP, Physical aspects of the lithium ion interactionwith the imperfect silicene located on a silver substrate, Letters on Materials 8(4) (2018) 463–467. https://doi.org/ 10.22226/2410-3535-2018-4-463-467
Galashev AY, Ivanichkina KA, Computer study of silicene applicability in electrochemical devices, J. Struct. Chem. 61 (2020) 659–667. https://orcid.org/10.1134/S0022476620040204
Galashev AY, Ivanichkina KA, Computer study of silicene channel structure based on the transport of Li+, Rus. J. Phys. Chem. A 2021 95(4) (2021) 724–729. https://doi.org/10.1134/S0036024421040063
Lee JK, Shin J-H, Lee H, Yoon WY, Characterization of nano silicon on nanopillar-patterned nickel substrate for lithium ion batteries, J. Electrochem. Soc., 161(10) (2014) A1480–A1485. https://doi.org/10.1149/2.0131410jes
Lalmi B, Girardeaux C, Portavoce A, Ottaviani C, et al., Formation and stability of a two-dimensional nickel silicide on Ni (111): an Auger, LEED, STM, and high-resolution photoemission study, Phys. Rev. B 85 (2012) 245306. https://doi.org/10.1103/PhysRevB.85.245306
Galashev AY, Zaikov YuP, New Si–Cu and Si–Ni anode materials for lithium-ion batteries, J. Appl. Electrochem. 49 (2019) 1027–1034. https://doi.org/10.1007/s10800-019-01344-9
Galashev AY, Computational investigation of silicene/nickel anode for lithium-ion battery, Solid State Ionics 357 (2020) 115463. https://doi.org/10.1016/j.ssi.2020.115463
Galashev AY, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, et al., Improved lithium-ion batteries and their communication with hydrogen power, Int. J. Hydrogen Energy, 46(32) (2021) 17019–17036. https://doi.org/10.1016/j.ijhydene.2020.11.225
Galashev AY, Rakhmanova OR, Stability of a two-layer silicene on a nickel substrate upon intercalation of lithium, Glass Phys. Chem. 46(4) (2020) 321–328. https://doi.org/10.1134/S1087659620040069
Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835. https://doi.org/10.1016/j.jocs.2022.101835
Le MQ, Nguyen DT, The role of defects in the tensile properties of silicene, Appl. Phys. A 118 (2014) 1437–1445. https://doi.org/10.1007/s00339-014-8904-3
Rasmussen AA, Jensen JAD, Horsewell A, Somers MAJ, Microstructure in electrodeposited copper layers; the role of the substrate, Electrochim. Acta 47 (2001) 67–74. https://doi.org/10.1016/S0013-4686(01)00583-7
Shen YF, Lu L, Lu QH, Jin ZH, Lu K, Tensile properties of copper with nano-scale twins, Scripta Mater. 59 (2005) 989–994. https://doi.org/10.1016/j.scriptamat.2005.01.033
Kaloyeros AE, Eisenbraun E, Ultrathin diffusion barriers/liners for gigascale copper metallization, Annu. Rev. Mater. Sci. 30 (2000) 363–385. https://doi.org/10.1146/annurev.matsci.30.1.363
Martella C, Faraone G, Alam MH, Taneja D, et al., Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020) 2004546. https://doi.org/10.1002/adfm.202004546
Galashev AY, Ivanichkina KA, Computational investigation of a promising Si–Cu anode material, Phys.Chem.Chem.Phys. 21 (2019) 12310. https://doi.org/1010.1039/C9CP01571J
Galashev AE, Rakhmanova OR, Isakov AV, Molecular dynamic behavior of lithium atoms in a flat silicene pore on a copper substrate, Rus. J. Phys. Chem. B 14(4) (2020) 705–713. https://doi.org/10.1134/S1990793120040053
Galashev AY, Structure of water clusters with captured methane molecules, Rus. J. Phys. Chem. B 8 (2014) 793–800. https://doi.org/10.1134/S1990793114110049
Chavez-Castillo MR, Rodrıguez-Mezab MA, Meza-Montes L, Size, vacancy and temperature effects on Young’s modulus of silicone nanoribbons, RSC Adv. 5 (2015) 96052–96061. https://doi.org/10.1039/C5RA15312C
Maranchi JP, Hepp AF, Kumta PN, High capacity reversible silicon thin film anodes lithium ion batteries, Electrochem. Solid-State Lett. 6 (2003) A198–A201. https://doi.org/10.1149/1.1596918
Maranchi JP, Hepp AF, Evans AG, Nuhfer NT, Kumta PN, Interfacial properties of the a-Si/Cu: active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc. 153 (2006) A1246–A1253. https://doi.org/110.1149/1.2184753
Graetz J, Ahn CC, Yazami R, Fultz B, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6 (2003) A194–A197. https://doi.org/10.1149/1.1596917
Yao NP, Heredy LA, Saunders RC, Emf measurements of electrochemically prepared lithium‐aluminum alloy, J. Electrochem. Soc. 118 (1971) 1039. https://doi.org/10.1149/1.2408242
Ji B, Zhang F, Sheng M, Tong X, Tang Y, A novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density, Adv. Mater. 29 (2017) 1604219. https://doi.org/10.1002/adma.201604219
Li S, Niu J, Zhao YC, So KP, et al., High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity, Nature Commun. 6 (2015) 7872. https://doi.org/10.1038/ncomms8872
Galashev AE, Ivanichkina KA, Computer study of the properties of silicon thin films on graphite, Rus. J. Phys. Chem. A, 91(12) (2017) 2445–2449. https://doi.org/10.1134/S003602441712007X
Galashev AE, Rakhmanova OR, Ivanichkina KA, Graphene and graphite supports for silicene stabilization: a computation study, J. Struct. Chem. 59(4) (2018) 877–883. https://doi.org/10.1134/S0022476618040194
Galashev AE, Ivanichkina KA, Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion, Phys. Solid State 61(2) (2019) 233–243. https://doi.org/10.1134/S1063783419020136
Skripov VP, Galashev AE, The structure of simple liquids, Rus. Chem. Rev. 52 (1983) 97–116. https://doi.org/10.1070/RC1983v052n02ABEH002792
Roman RE, Cranford SW, Mechanical properties of silicene, Comput. Mater. Sci. 82 (2014) 50–55. https://doi.org/10.1016/j.commatsci.2013.09.030
Huang XD, Zhang F, Gan XF, Huang QA, et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode, RSC Adv. 8 (2018) 5189–5196. https://doi.org/10.1039/C7RA12463E
Majid A, Fatima A, Khan SU-D, Khan S, Layered silicon carbide: a novel anode material for lithium ion batteries, New J. Chem. 45 (2021) 19105–19117. https://doi.org/10.1039/D1NJ04261K
Ibrahim N, Mohammed L, Ahmed R, Graphene-like silicon carbide layer for potential safe anode lithium ion battery: A first principle study, Science Talks 4 (2022) 100075. https://doi.org/10.1016/j.sctalk.2022.100075
Galashev AY, Rakhmanova OR, Two-layer silicene on the SiC substrate: Lithiation investigation in the molecular dynamics experiment, ChemPhysChem 23(18) (2022) e202200250. https://doi.org/10.1002/cphc.202200250
Galashev AE, Computer test of a silicene/silicon carbide anode for a lithium ion battery, Rus. J. Phys. Chem. A 96(12) (2022) 2757–2762. https://doi.org/10.1134/S0036024422120123
Mortazavi B, Dianat A, Cuniberti G, Rabczuk T, Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta 2013 (2016) 865–870. http://dx.doi.org/10.1016/j.electacta.2016.08.027
Galashev AE, Computer simulation of a silicene anode on a silicene carbide substrate, Rus. J. Phys. Chem. B 17(1) (2023) 113–121. https://doi.org/10.1134/S1990793123010190
Galashev AY, Vorob’ev AS, Electronic properties and structure of silicene on Cu and Ni substrates, Materials 15 (2022) 3863. https:// doi.org/10.3390/ma15113863
Galashev AY, Vorob’ev AS, DFT study of silicene on metal (Al, Ag, Au) substrates of various thicknesses, Phys. Lett. A 408(27) (2021) 127487. https://doi.org/10.1016/j.physleta.2021.127487
Galashev AY, Vorob’ev AS, An ab initio study of lithization of two-dimensional silicon–carbon anode material for lithium-ion batteries, Materials 14 (2021) 6649. https://doi.org/10.3390/ma14216649
Galashev AY, Vorob’ev AS, An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide, Physica E: Low Dimens. Syst. Nanostruct. 138 (2022) 115120. https://doi.org/10.1016/j.physe.2021.115120
Fatima A, Majid A, Haider S, Akhtar MS, Alkhedher M, First principles study of layered silicon carbide as anode in lithium ion battery, Quantum Chem. 122(11) (2022) e26895. https://doi.org/10.1002/qua.26895
Leonova AM, Bashirov OA, Leonova NM, Lebedev AS, et al., Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources, Appl. Sci. 13(2) (2023) 901. https://doi.org/10.3390/app13020901
Liao HW, Karki K, Zhang Y, Cumings J, Wang YH, Interfacial mechanics of carbon nanotube@amorphous-Si coaxial nanostructures, Adv. Mater., 23 (2011) 4318–4322. https://doi.org/10.1002/adma.201101762
Simon GK, Maruyama B, Durstock MF, Burton DJ, Goswami T, Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes, J. Power Sources 196 (2011) 10254–10257. https://doi.org/10.1016/j.jpowsour.2011.08.058
Etacheri V, Geiger U, Gofer Y, Roberts GA, et al., Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir 28 (2012) 6175–6184. https://doi.org/10.1021/la300306v
Du Y, Zhuang J, Liu H, Xu X, et al., Quasi-freestanding epitaxial silicene by oxygen intercalation, ACS Nano 8 (2014), 10019. https://doi.org/10.1021/nn504451t
Kanno M, Arafune R, Lin CL, Minamitani E, et al., Electronic decoupling by h-BN layer between silicene and Cu(111): a DFT-based analysis New J. Phys. 16 (2014) 105019. https://doi.org/10.1088/1367-2630/16/10/105019
Dávila ME, Le Lay G, Silicene: Genesis, remarkable discoveries, and legacy, Materialstoday Adv. 16 (2022) 100312. https://doi.org/10.1016/j.mtadv.2022.100312
Martella C, Faraone G, Alam MH, Taneja D, et al. Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020), 2004546. https://doi.org/10.1002/adfm.202004546
Sahoo S, Sinha A, Koshi NA, Lee S-C, et al., Silicene: an excellent material for flexible electronics, J. Phys. D Appl. Phys. 55 (2022), 425301. https://doi.org/10.1088/1361-6463/ac8080
An Y, Tian Y, Wei C, Zhang Y, et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion, Energy Storage Mater. 32 (2020) 115–150. https://doi.org/10.1016/j.ensm.2020.07.006
Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M, Two-dimensional materials in biomedical, biosensing and sensing applications, Chem. Soc. Rev. 50 (2021) 619–657. https://doi.org/10.1039/D0CS00150C
Priimägi P, Kasemägi H, Aabloo A, Brandell D, Zadin V, Thermal simulations of polymer electrolyte 3D Li-microbatteries, Electrochim. Acta 244 (2017) 129–138. https://doi.org/10.1016/j.electacta.2017.05.055
Su X, Guo K, Ma T, Tamirisa, P, et al., Deformation and chemomechanical degradation at solid electrolyte-electrode interfaces, ACS Energy Lett. 2(8) (2017) 1729–1733. https://doi.org/10.1021/acsenergylett.7b00481
Natsiavas PP, Weinberg K, Rosato D, Ortiz M, Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J. Mech. Phys. Solid. 95 (2016) 92–111. https://doi.org/10.1016/j.jmps.2016.05.007
Guo M, Yuan C, Zhang T, Yu X, Solid-state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism, Small 18(43) (2022) 2106981. https://doi.org/10.1002/smll.202106981
Alipour M, Ziebert C, Conte FV, Kizilel R, A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells, Batteries 6(3) (2020) 35. https://doi.org/10.3390/batteries6030035
Galashev AY, Suzdaltsev AV, Ivanichkina K A, Design of the high performance microbattery with silicene anode, Mater. Sci. & Eng. B 261 (2020) 114718. https://doi.org/10.1016/j.mseb.2020.114718
DOI: https://doi.org/10.15826/elmattech.2023.2.012
Copyright (c) 2023 Alexander Y. Galashev
This work is licensed under a Creative Commons Attribution 4.0 International License.