Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7
Abstract
Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.
Keywords
Full Text:
PDFReferences
Zhang F, Zhu K, Additive Engineering for Efficient and Stable Perovskite Solar Cells Advanced Energy, Materials 10 (131) (2020) 1902579. https://doi.org/10.1002/aenm.201902579
Kwon N, Lee J, Ko MJ, Kim YY, Seo J, Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells, Nano Convergence 10 (1) (2023) 28. https://doi.org/10.1186/s40580-023-00375-5
Liu S, Biju VP, Qi Y, Chen W, Liu Z, Recent progress in the development of high-efficiency inverted perovskite solar cells, NPG Asia Materials 15 (1) (2023) 27. https://doi.org/10.1038/s41427-023-00474-z
Wu T, Qin Z, Wang Y et al., The Main Progress of Perovskite Solar Cells in 2020–2021, Nano-Micro Lett. 13 (2021) 152. https://doi.org/10.1007/s40820-021-00672-w
Liu XK, Xu W, Bai S et al., Metal halide perovskites for light-emitting diodes, Nat. Mater. 20 (2021) 10–21. https://doi.org/10.1038/s41563-020-0784-7
Li X, Gao X, Zhang X et al., Lead‐Free Halide Perovskites for Light Emission: Recent Advances and Perspectives, Advanced Science 8 (4) (2021) 2003334. https://doi.org/10.1002/advs.202003334
Zhang Q, Shang Q, Su R, Do TTH, Xiong Q, Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold, Nano Letters 21 (5) (2021) 1903–1914. https://doi.org/10.1021/acs.nanolett.0c03593
Liu D, Luo D, Iqbal A.N. et al., Strain analysis and engineering in halide perovskite photovoltaics, Nat. Mater. 20 (2021) 1337–1346. https://doi.org/10.1038/s41563-021-01097-x
Dey A, Ye J et al., State of the Art and Prospects for Halide Perovskite Nanocrystals, ACS Nano 15 (7) (2021) 10775–10981. https://doi.org/10.1021/acsnano.0c08903
Li J, Duan J, Yang X, Duan Y, Yang P, Tang Q, Review on Recent Progress of Lead-Free Halide Perovskites in Optoelectronic Applications, Nano Energy 80 (2020) 105526. https://doi.org/10.1016/j.nanoen.2020.105526
Sun C, Alonso JA, Bian J, Recent Advances in Perovskite-Type Oxides for Energy Conversion and Storage Applications, Advanced Energy Materials 11 (2) (2021) 2000459. https://doi.org/10.1002/aenm.202000459
Kaur P, Singh K, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceramics International 46 (5) (2020) 5521–55351. https://doi.org/10.1016/j.ceramint.2019.11.066
Ding P, Li W, Zhao H, Wu C, Zhao Li, Dong B, Wang S, Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells, J. Phys. Mater. 4 (2) (2021) 022002. https://doi.org/10.1088/2515-7639/abe392
Hanif MB, Rauf S, Motola M, Babar ZUD, Li CJ, Li CX, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications, Materials Research Bulletin 146 (2022) 111612, https://doi.org/10.1016/j.materresbull.2021.111612
Kasyanova AN, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z, Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions, Mater. Rep. Energy 2 (2022) 100158. https://doi.org/10.1016/j.matre.2022.100158
Küngas R, Review – Electrochemical CO2 Reduction for CO Production: Comparison of Low- And High-Temperature Electrolysis Technologies, Journal of the Electrochemical Society 167 (4) (2020) https://doi.org/10.1149/1945-7111/ab7099
Kamkeng AND, Wang M, Hu J, Du W, Qian F, Transformation technologies for CO2 utilisation: Current status, challenges and future prospects, Chemical Engineering Journal 4091 (2021) 128138. https://doi.org/10.1016/j.cej.2020.128138
Younas M, Shafique S, Hafeez A, Javed F, Rehman F, An Overview of Hydrogen Production: Current Status, Potential, and Challenges, Fuel 31615 (2022) 123317. https://doi.org/10.1016/j.fuel.2022.123317
Hossain MK, Chanda R, El-Denglawey A., Emrose T, Rahman MT, Biswas MC, Hashizume K, Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review, Ceramics International 47 (17) (2021) 23725–237481. https://doi.org/10.1016/j.ceramint.2021.05.167
Hanif MB, Rauf S, Abadeen Z et al., Proton-conducting solid oxide electrolysis cells: Relationship of composition-structure-property, their challenges, and prospects, Matter 6 (6) (2023) 1782–1830. https://doi.org/10.1016/j.matt.2023.04.013
Nayak AK, Sasmal A, Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell, Journal of Cleaner Production 386 (2023) 135827. https://doi.org/10.1016/j.jclepro.2022.135827
Rasaki SA, Liu C, Lao C, Chen Z, A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells, Progress in Solid State Chemistry 63 (2021) 100325. https://doi.org/10.1016/j.progsolidstchem.2021.100325
Hossain MK, Biswas MC, Chanda RK et al. A review on experimental and theoretical studies of perovskite barium zirconate proton conductors, Emergent Mater. 4 (2021) 999–1027, https://doi.org/10.1007/s42247-021-00230-5
Vera CYR, Ding H, Peterson D et al., A mini-review on proton conduction of BaZrO3-based perovskite electrolytes, J. Phys. Energy 3 (2021) 032019, https://doi.org/10.1088/2515-7655/ac12ab
Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishigaki T, Hester JR, New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4, Chem. Mater. 26 (2014) 2488−2491. https://doi.org/10.1021/cm500776x.
Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S, Improved oxide-ion conductivity of NdBaInO4 by Sr doping, J. Mater. Chem. A 3 (2015) 11985. https://doi.org/10.1039/c5ta01336d
Troncoso L, Alonso JA, Aguadero A, Low activation energies for interstitial oxygen conduction in the layered perovskites La1+xSr1-xInO4+d, J. Mater. Chem. A 3 (2015) 7797–17803. https://doi.org/10.1039/c5ta03185k
Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A, Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1-xBxO4+δ system (B=Zr, Ti), Solid State Ion. 282 (2015) 82–87. https://doi.org/10.1016/j.ssi.2015.09.014
Ishihara T, Yan Y, Sakai T, Ida S, Oxide ion conductivity in doped NdBaInO4, Solid State Ion. 288 (2016) 262–265. https://doi.org/10.1016/j.ssi.2016.01.011
Yang X, Liu S, Lu F, Xu J, Kuang X, Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors, J. Phys. Chem. C 120 (2016) 6416–6426. https://doi.org/10.1021/acs.jpcc.6b00700
Fijii K, Yashima M, Discovery and development of BaNdInO4—A brief review, J. Ceram. Soc. Jpn. 126 (2018) 852–859. https://doi.org/10.2109/jcersj2.18110
Troncoso L, Mariño C, Arce MD, Alonso JA, Dual Oxygen Defects in Layered La1.2Sr0.8-xBaxInO4+d (x = 0.2, 0.3) Oxide-Ion Conductors: A Neutron Diffraction Study, Materials 12 (2019) 1624. https://doi.org/10.3390/ma12101624
Tarasova N, Animitsa I, Galisheva A, Korona D, Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden-Popper Structure, Materials 12 (2019) 1668. https://doi.org/10.3390/ma12101668
Troncoso L, Arce MD, Fernández-Díaz MT, Mogni LV, Alonso JA, Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8-xBaxInO4+δ, New J. Chem. 43 (2019) 6087–6094. https://doi.org/10.1039/C8NJ05320K
Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogni LV, Skinner SJ, Protonic Conduction in the BaNdInO4 Structure Achieved by Acceptor Doping, Chem. Mater. 33 (2021) 2139–2146. https://doi.org/10.1021/acs.chemmater.0c04828
Shiraiwa M, Kido T, Fujii K, Yashima M, High-temperature proton conductors based on the (110) layered perovskite BaNdScO4, J. Mat. Chem. A 9 (2021) 8607. https://doi.org/10.1039/D0TA11573H
Tarasova NA, Animitsa IE, Galisheva AO, Medvedev DA, Layered and hexagonal perovskites as novel classes of proton-conducting solid electrolytes. A focus review, Electrochem. Mater. Technol. 1 (2022) 20221004. https://doi.org/10.15826/elmattech.2022.1.004
Tarasova N, Galisheva A, Animitsa I, Korona D, Davletbaev K, Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2+, H−) conductivity, International journal of hydrogen energy 47 (44) (2022) 1897–18982. https://doi.org/10.1016/j.ijhydene.2022.04.112
Tarasova N, Galisheva A, Animitsa I, Ba2+/Ti4+-co-doped layered perovskite BаLaInO4: The structure and ionic (O2−, H+) conductivity. Int. J. Hydrog. Energy 46 (2021) 16868−16877. https://doi.org/10.1016/j.ijhydene.2021.02.044
Tarasova N, Animitsa I, Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes, Materials 15 (1) (2022) 114. https://doi.org/10.3390/ma15010114
Tarasova N, Galisheva A, Animitsa I, Belova K, Egorova A, Abakumova E, Medvedev D, Layered Perovskites BaM2In2O7 (M = La, Nd): From the Structure to the Ionic (O2–, H+) Conductivity, Materials 15 (2022) 3488. https://doi.org/10.3390/ma15103488
Tarasova N, Layered Perovskites BaLnnInnO3n+1 (n = 1, 2) for Electrochemical Applications: A Mini Review, Membranes 13 (2023) 34. https://doi.org/10.3390/membranes13010034
Tarasova N, Bedarkova A, Animitsa I, Abakumova E, Cation and oxyanion doping of layered perovskite BaNd2In2O7: oxygen-ion and proton transport, International journal of hydrogen energy 48 (59) (2023) 22522–22530. https://doi.org/10.1016/j.ijhydene.2022.11.172
Tarasova N, Bedarkova A, Animitsa I, Abakumova E, Gnatyuk V, Zvonareva I, Novel Protonic Conductor SrLa2Sc2O7 with Layered Structure for Electrochemical Devices, Materials 15 (2022) 8867. https://doi.org/10.3390/ma15248867
Shannon RD, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32 (1976) 751–767. https://doi.org/10.1107/S0567739476001551
DOI: https://doi.org/10.15826/elmattech.2023.2.015
Copyright (c) 2023 Nataliia A. Tarasova
This work is licensed under a Creative Commons Attribution 4.0 International License.