Cover Image

Co-doping effect on the microstructural and electrical properties of barium stannate materials

George N. Starostin, Mariam T. Akopian, Inna A. Starostina, Dmitry A. Medvedev

Abstract


Proton-conducting perovskite oxides are of considerable interest to researchers as promising electrolytes for low- and intermediate solid oxide electrochemical cells. Therefore, designing new potential proton-conducting phases and improving the functional properties of known materials are of great importance from both fundamental and applied viewpoints. In the present work, BaSnO3 was selected as a reference proton-conducting system and then a co-doping strategy was employed to analyze ‘composition – structure – microstructure – transport properties’ relationships. To perform such an analysis, the properties of previously studied BaSn0.7M0.3O3δ (M = In, Sc, Y) compounds were compared here to their co-doped derivatives, BaSn0.7In0.15Sc0.15O3δ, BaSn0.7Y0.15Sc0.15O3δ, and BaSn0.7In0.15Y0.15O3δ. It is found that the type of dopant affects the materials sinterability, when more coarse-crystalline ceramics are formed with increasing the average ionic radii at the Sn-position. The introduction of Y3+-cations reduces both ionic and hole conductivities compared to single-doped with In3+ or Sc3+ barium stannate materials. However, simultaneous doping with In3+/Sc3+ cations minimizes the contribution of hole conductivity compared to that of Sc-doped barium stannate with the same acceptor dopant concentration.


Keywords


BaSnO3; perovskite; proton transport; PCFCs; PCECs; conductivity

Full Text:

PDF

References


Filippov SP, Yaroslavtsev AB, Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 90(6) (2021) 627–643. https://doi.org/10.1070/RCR5014

Ishaq H, Dincer I, Crawford C, A review on hydrogen production and utilization: challenges and opportunities, Int. J. Hydrogen Energy, 47(62) (2022) 26238–26264. https://doi.org/10.1016/j.ijhydene.2021.11.149

Hauch A, Küngas R, Blennow P, Hansen AB et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(6513) (2020) eaba6118. https://doi.org/10.1126/science.aba6118

Gómez SY, Hotza D, Current developments in reversible solid oxide fuel cells, Renew. Sustain. Energy Rev., 61 (2016) 155–174. https://doi.org/10.1016/j.rser.2016.03.005

da Silva FS, de Souza TM, Novel materials for solid oxide fuel cell technologies: A literature review, Int. J. Hydrogen Energy, 42(41) (2017) 26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105

Zhang J, Ricote S, Hendriksen PV, Chen Y, Advanced materials for thin‐film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures, Adv. Funct. Mater., 32(22) (2022) 2111205. https://doi.org/10.1002/adfm.202111205

Hossain S, Abdalla AM, Jamain SNB, Zaini JH et al., A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energy Rev., 79 (2017) 750–764. https://doi.org/10.1016/j.rser.2017.05.147

Zhang W, Hu YH, Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: from materials to devices, Energy Sci. & Eng., 9(7) (2021) 984–1011. https://doi.org/10.1002/ese3.886

Wang Y, Chesnaud A, Bevillon E, Dezanneau G, Properties of Y-doped BaSnO3 proton conductors, Solid State Ion., 214 (2012) 45–55. https://doi.org/10.1016/j.ssi.2012.02.045

Kim J, Sengodan S, Kim S, Kwon O et al., Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage, Renew. Sustain. Energy Rev., 109 (2019) 606–618. https://doi.org/10.1016/j.rser.2019.04.042

Kreuer KD, Proton-conducting oxides, Annu. Rev. Mater. Res., 33(1) (2003) 333–359. https://doi.org/10.1146/annurev.matsci.33.022802.091825

Wang S, Shen J, Zhu Z, Wang Z et al., Further optimization of barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte, J. Power Sources, 387 (2018) 24–32. https://doi.org/10.1016/j.jpowsour.2018.03.054

Fabbri E, Markus I, Bi L, Pergolesi D et al., Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and pr co-doping for cathode application in protonic SOFCs, Solid State Ion., 202(1) (2011) 30–35. https://doi.org/10.1016/j.ssi.2011.08.019

Wang Y, Chesnaud A, Bevillon E, Huang J et al., Preparation and characterization of In-substituted BaSnO3 compounds, Funct. Mater. Lett., 06(04) (2013) 1350041. http:/dx.doi.org/10.1142/S1793604713500410

Ito T, Nagasaki T, Iwasaki K, Yoshino M et al., Location of deuterium atoms in BaSn0.5In0.5O2.75+δ at 77–473 K by neutron powder diffraction, Solid State Ion., 178(7-10) (2007) 607–613. https://doi.org/10.1016/j.ssi.2007.01.024

Igawa N, Kodama K, Taguchi T, Yoshida Y et al., Local disorder in proton conductor BaSn0.5In0.5O2.75 analyzed by neutron diffraction/atomic pair distribution function, Trans. Mater. Res. Soc. Jpn., 43(6) (2018) 329–332. https://doi.org/10.14723/tmrsj.43.329

Nakamura M, Watanabe H, Akamatsu H, Fujii K et al., Sn-based Perovskite with a wide Visible-light Absorption band Assisted by hydride Doping, Chem. Mater., 33(10) (2021) 3631–3638. https://doi.org/10.1021/acs.chemmater.1c00460

Nakamura M, Akamatsu H, Fujii K, Nambu Y et al., Synthesis of Hydride-doped Perovskite stannate with visible Light absorption Capability, Inorg. Chem., 61(17) (2022) 6584–6593. https://doi.org/10.1021/acs.inorgchem.2c00398

Zvonareva IA, Mineev AM, Tarasova NA, Fu XZ et al., High-temperature transport properties of BaSn1–xScxO3–δ ceramic materials as promising electrolytes for protonic ceramic fuel cells, J. Adv. Ceram., 11(7) (2022) 1131–1143. https://doi.org/10.1007/s40145-022-0599-x

Kinyanjui FG, Norberg ST, Knee CS, Ahmed I et al., Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy, J. Mater. Chem. A, 4(14) (2016) 5088–5101. https://doi.org/10.1039/C5TA09744D

Wang Y, Su T, Liu W, Dong Y et al., Effect of zn contents on the microstructure and electrical properties of

BaSn0.5Y0.5–xZnxO2.75 (x=0–0.04), Ceram. Int., 41(1) (2015) 481–486. https://doi.org/10.1016/j.ceramint.2014.08.095

Wang Y, Su T, Liu W, Chang Q et al., Effect of indium content on the properties of BaSn0.5Y0.5–xInxO2.75 proton conductor, Ceram. Int., 41(5) (2015) 6863–6868. https://doi.org/10.1016/j.ceramint.2015.01.136

Lu N, Zhang Z, Wang Y, Li HB et al., Enhanced low-temperature proton conductivity in hydrogen-intercalated brownmillerite oxide, Nat. Energy, 7(12) (2022) 1208–1216. https://doi.org/10.1038/s41560-022-01166-8

Kochetova N, Animitsa I, Medvedev D, Demin A et al., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 6(77) (2016) 73222–73268. https://doi.org/10.1039/C6RA13347A

Zvonareva IA, Starostin GN, Akopian MT, Vdovin GK et al., Ionic and electronic transport of dense Y-doped barium stannate ceramics for high-temperature applications, J. Power Sources, 565 (2023) 232883. https://doi.org/10.1016/j.jpowsour.2023.232883

Yang JH, Kim DH, Kim BK, Kim YC, High activation energy for proton migration at ∑3111/11¯0 tilt grain boundary in barium zirconate, Solid State Ion., 252 (2013) 126–131. https://doi.org/10.1016/j.ssi.2013.07.006

Zvonareva IA, Kasyanova AV, Tarutin AP, Vdovin GK et al., Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials, J. Am. Ceram. Soc., 105(3) (2022) 2105–2115. https://doi.org/10.1111/jace.18224

Klinkova LA, Nikolaichik VI, Barkovskii NV, Fedotov VK, On the existence of a homologous series of BamCum+nOy oxides with the cubic structure of the BaCuO2 oxide, Phys. C Supercond., 470(22) (2010) 2067–2071. https://doi.org/10.1016/j.physc.2010.09.013

Yang CF, Lo SH, Grain growth for CuO-BaO mixtures added BaTi1+xO3+2x ceramics, Mater. Res. Bull., 32(12) (1997) 1713–1722. https://doi.org/10.1016/S0025-5408(97)00156-6

Amsif M, Marrero-Lopez D, Ruiz-Morales JC, Savvin SN et al., Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3–δ proton conductors, J. Power Sources, 196(7) (2011) 3461–3469. https://doi.org/10.1016/j.jpowsour.2010.11.120

Gilardi E, Fabbri E, Bi L, Rupp JLM et al., Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity, J. Phys. Chem. C, 121(18) (2017) 9739–9747. https://doi.org/10.1021/acs.jpcc.7b02163

Lv J, Wang L, Lei D, Guo H et al., Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3–δ (M=In, Y, Gd, Sm), J. Alloys Compd., 467(1-2) (2009) 376–382. https://doi.org/10.1016/j.jallcom.2007.12.103

Zvonareva IA, Medvedev DA, Proton-conducting barium stannate for high-temperature purposes: A brief review, J. Eur. Ceram. Soc., 43(2) (2023) 198–207. https://doi.org/10.1016/j.jeurceramsoc.2022.10.049

Fabbri E, Pergolesi D, Traversa E, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev., 39(11) (2010) 4355. https://doi.org/10.1039/B902343G

Han D, Toyoura K, Uda T, Protonated BaZr0.8Y0.2O3–δ: impact of hydration on electrochemical Conductivity and local Crystal Structure, ACS Appl. Energy Mater., 4(2) (2021) 1666–1676. https://doi.org/10.1021/acsaem.0c02832

Sun W, Liu M, Liu W, Chemically stable yttrium and tin co‐doped barium zirconate electrolyte for next generation high performance proton‐conducting solid oxide fuel cells, Adv. Energy Mater., 3(8) (2013) 1041–1050. https://doi.org/10.1002/aenm.201201062

Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L et al., Electrolyte materials for protonic ceramic electrochemical cells: main limitations and potential solutions, Mater. Rep.: Energy, 2(4) (2022) 100158. https://doi.org/10.1016/j.matre.2022.100158

Qiu R, Lian W, Ou Y, Tao Z et al., Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells, J. Power Sources, 505 (2021) 230038. https://doi.org/10.1016/j.jpowsour.2021.230038

Oishi M, Akoshima S, Yashiro K, Sato K et al., Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3, Solid State Ion., 179(39) (2008) 2240–2247. http:/dx.doi.org/10.1016/j.ssi.2008.08.005

Oishi M, Akoshima S, Yashiro K, Sato K et al., Defect structure analysis of proton-oxide ion mixed conductor BaCe0.9Nd0.1O3−δ, Solid State Ion., 181(29-30) (2010) 1336–1343. https://doi.org/http://dx.doi.org/10.1016/j.ssi.2010.07.034

Lim DK, Park CJ, Choi MB, Park CN et al., Partial conductivities of mixed conducting BaCe0.65Zr0.2Y0.15O3–δ, Int. J. Hydrogen Energy, 35(19) (2010) 10624–10629. http://dx.doi.org/10.1016/j.ijhydene.2010.07.122

Zvonareva IA, Tarutina LR, Vdovin GK, Lyagaeva JG et al., Heavily Sn-doped barium cerates BaCe0.8–xSnxYb0.2O3–δ: correlations between composition and ionic transport, Ceram. Int., 47(18) (2021) 26391–26399. https://doi.org/10.1016/j.ceramint.2021.06.050

Zhu Z, Wang S, Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells, Ceram. Int., 45(15) (2019) 19289–19296. https://doi.org/10.1016/j.ceramint.2019.06.179

Qin G, Bao J, Gao J, Ruan F et al., Enhanced grain boundary conductivity of Gd and Sc co-doping BaZrO3 proton conductor for proton ceramic fuel cell, Chem. Eng. J., 466 (2023) 143114. https://doi.org/10.1016/j.cej.2023.143114

Lesnichyova AS, Belyakov SA, Stroeva AY, Kuzmin AV, Proton conductivity and mobility in Sr-doped LaScO3 perovskites, Ceram. Int., 47(5) (2021) 6105–6113. https://doi.org/10.1016/j.ceramint.2020.10.189

Kasyanova AV, Lyagaeva JG, Vdovin GK, Murashkina AA et al., Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements, Electrochimica Acta, 439 (2023) 141702. https://doi.org/10.1016/j.electacta.2022.141702

Lesnichyova A, Stroeva A, Belyakov S, Farlenkov A et al., Water uptake and transport properties of La1–xCaxScO3–α proton-conducting oxides, Materials, 12(14) (2019) 2219. http:/dx.doi.org/10.3390/ma12142219

Ding Y, Li Y, Huang W, Influence of grain interior and grain boundaries on transport properties of scandium‐doped calcium zirconate, J. Am. Ceram. Soc., 103(4) (2020) 2653–2662. https://doi.org/10.1111/jace.16968

Lyagaeva J, Danilov N, Korona D, Farlenkov A et al., Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method, Ceram. Int., 43(9) (2017) 7184–7192. http://dx.doi.org/10.1016/j.ceramint.2017.03.006

Khaliullina A, Meshcherskikh A, Dunyushkina L, Effect of cation nonstoichiometry on hydration and charge transport processes in Yb-doped SrZrO3 perovskite-type proton conductor for ceramic electrochemical cells, Processes, 11(10) (2023) 2939. https://doi.org/10.3390/pr11102939

Lu J, Wang L, Fan L, Li Y et al., Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres, J. Rare Earths, 26(4) (2008) 505–510. https://doi.org/10.1016/S1002-0721(08)60127-1

Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK et al., Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci., 75 (2016) 38–79. http://dx.doi.org/10.1016/j.pmatsci.2015.08.001




DOI: https://doi.org/10.15826/elmattech.2024.3.037

Copyright (c) 2024 George N. Starostin, Mariam T. Akopian, Inna A. Starostina, Dmitry A. Medvedev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.