Cover Image

Development of heat transfer and electric current models of anode on the base of NiO-Li2O ceramics

Ksenia A. Abramova, Andrey F. Anisimov, Oksana R. Rakhmanova, Dmitry A. Maksimov, Alexander V. Kosov, Yuri S. Mochalov, Sergei V. Nikiforov, Yuri P. Zaikov

Abstract


In this paper, the finite element method in COMSOL Multiphysics is employed to numerically simulate the electric field in a construction consisting of a ceramic NiO-Li2O (3 wt. %) anode attached to two steel current leads, as well as the thermal fields within a quartz cell containing this construction. The distributions of the electric current density and temperature gradient generated in the ceramic anode when the applied current is 10 to 50 A (in 10 A increments) are calculated. The model is validated using experimental data. The main causes of anode cracking at the point where it is attached to the current lead are identified. Using the proposed model, the electric field distribution in a similar anode with a new current lead design is predicted. It is demonstrated that the new current lead design allows minimizing the disparity in current density values between the area under the current lead and the free part of the anode.

Keywords


finite element method; ceramic anode; thermal conductivity; electrical conductivity; mathematical modeling

Full Text:

PDF

References


Zhitkov A, Potapov A, Karimov K, Shishkin V, et al., Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K, Nucl. Eng. Technol., 52 (2020) 123e134. https://doi.org/10.1016/j.net.2019.07.006

Fujita R, Pyrochemical Process in Molten Salts for Spent Nuclear Fuel Reprocessing and Radioactive Waste Treatments, ECS Trans., 86 (2018) 311–320. https://doi.org/10.1149/08614.0311ecst

Kim S-W, Jeon MK, Kang HW, Lee S-K, et al., Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing, J. Radioanal. Nucl. Chem., 310 (2016) 463e467. https://doi.org/10.1007/s10967-016-4786-5

Shishkin AV, Shishkin VYu, Salyulev AB, Kesikopulos VA, et al., Electrochemical reduction of uranium dioxide in LiCl–Li2O melt, Atomic Energy, 131(2) (2021) 77–82. https://doi.org/10.1007/s10512-022-00850-y

Mullabaev AR, Kovrov VA, Kholkina AS, Zaikov YuP, Anode processes on Pt and ceramic anodes in chloride and oxidechloride melts, Nucl. Eng. Tech., 54 (2022) 965e974. https://doi.org/10.1016/j.net.2021.08.034

Yang Y-J, Yang L, Wang H-K, Zhu Sh-P, et al., Finite Element Analysis for Turbine Blades with Contact Problems, Int. J. Turbo Jet Eng., 4 (2015) 132–145. https://doi.org/10.1515/tjj-2015-0043

Takle ES, Russell RD, Applications of the finite element method to modeling the atmospheric boundary layer, Comp. Math. Appl., 16(1–2) (1988) 57–68. https://doi.org/10.1016/0898-1221(88)90024-7

Talal MM, Sarraf ZSh, Jamil SM, Finite Element Simulation and Stress Analysis of Gas Turbine Blade Due to Centrifugal Force, Int. J. Adv. Nat. Scie. Eng. Res., 7(6) (2023) 250–255. https://doi.org/10.59287/ijanser.1161

Jung H-W, Kim S-J, Kim Y-J, Kim J-Y, et al., Finite element analysis of vertical micro-probe considering Joule-heating effect, Int. J. Fat., 101(1) (2017) 96–105. https://doi.org/10.1016/j.ijfatigue.2017.02.021

Liu Ch, Kelly RG, The Use of Finite Element Methods (FEM) in the Modeling of Localized Corrosion, Electrochem. Soc. Interface, 23 (2014) 47–55. https://doi.org/10.1149/2.F02144IF

Catalan-Martinez D, Navarrete L, Tarach M, Santos-Blasco J, et al., Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells, International Journal of Hydrogen Energy, 47(65) (2022) 27787–27799, https://doi.org/10.1016/j.ijhydene.2022.06.112

Necheporenko I, Arkhipov A. Modelling of the magnetic field and magnetohydrodynamic behaviour of a typical aluminium cell using COMSOL. In: Proceedings of the 2014 COMSOL Conference; 2014; p. 125.

Chen Yu, Yang L, Guo F, Liu D, et al., Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries, J. Pow. Sour., 527 (2022) 231178. https://doi.org/10.1016/j.jpowsour.2022.231178

Mansouri A, Binali A, Khan N, Zamanzadeh M, Taheri P, Three‑dimensional modeling of in‑ground cathodic protection systems with deforming anodes, Sci. Rep., 11 (2021) 1894. https://doi.org/10.1038/s41598-021-81184-w

Chen D, Daoud H, Dörflinger T, Näser P, et al., Simulation assisted design and manufacturing of anode for the hard chrome plating of components with complex geometry, Surf. Coat. Tech., 455 (2023) 129178. https://doi.org/10.1016/j.surfcoat.2022.129178

Rosebrock C, Bracke S. Simulation of anode corrosion in the electrowinning process of non-ferrous metals. In: Proceedings of 2020 Annual Reliability and Maintainability Symposium (RAMS); 2020 January 27–30; Palm Springs, CA, USA. pp. 1–6. https://doi.org/10.1109/RAMS48030.2020.9153626

https://www.comsol.com/, COMSOL Multiphysics, v. 5.3.

Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer. 6th ed. New York: John Wiley & Sons; 2006. 997 p.

Houda S, Belarbi R, Zemmouri N, A CFD Comsol model for simulating complex urban flow, Energy Procedia, 139 (2017) 373–378. https://doi.org/10.1016/j.egypro.2017.11.224

Cherkasov SG, Ananyev A, Moiseeva LA, Limitations of the Boussinesq model on the example of laminary natural convection of gas between vertical isothermal walls, High Temp., 56(6) (2018) 878. https://doi.org/10.1134/S0018151X18060081

Moench S, Dittrich R, Influence of Natural Convection and Volume Change on Numerical Simulation of Phase Change Materials for Latent Heat Storage, Energies, 15 (2022) 2746. https://doi.org/10.3390/en15082746

Loken A, Ricote S, Wachowski S, Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes, Crystals, 8(9) (2018) 365. https://doi.org/10.3390/cryst8090365

Sofie SW, Taylor DR. Controlled Thermal Expansion Anode Compositions with Improved Strength for Use in Anode Supported SOFCs. New York: John Wiley & Sons, Inc.; 2009. pp. 215–223. https://doi.org/10.1002/9780470339534.ch21




DOI: https://doi.org/10.15826/elmattech.2025.4.050

Copyright (c) 2025 Ksenia A. Abramova, Andrey F. Anisimov, Oksana R. Rakhmanova, Dmitry A Maksimov, Alexander V. Kosov, Yuri S. Mochalov, Sergei V. Nikiforov, Yuri P. Zaikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.