Cover Image

Stability and reproducibility of solid electrolyte amperometry sensors at the analysis of hydrogen in nitrogen-containing gas mixtures

Anatoly S. Kalyakin, Aleksander N. Volkov, Maxim Yu. Gorshkov

Abstract


This paper illustrates the results of long-term tests on the stability of the output signal of the solid electrolyte amperometry sensor when measuring the hydrogen concentration in the H2 + N2 gaseous mixture. The obtained experimental data verify the stability and reproducibility of the sensor output signal for hydrogen concentration measurements in the nitrogen-containing gaseous mixture during > 8000 h of operation. The output signal drift, i.e., the limiting current value, was insignificant, less than ± 5 %. The sensor operation was performed at 3 temperature shifts with different time intervals; these changes did not have any impact either on the sensor integrity or on its operation. The structure of the solid electrolyte sensor, intermediate solid electrolyte / electrode layer and electrodes did not undergo any significant changes during operation. The dynamic characteristics of the sensor, the response time in particular, remained stable during the operation.


Keywords


hydrogen; solid electrolyte; sensor; stability; limiting current; response time

Full Text:

PDF

References


Okamoto H, Obayashi H, Kudo T, Carbon monoxide gas sensor made of stabilized zirconia, Solid State Ion., 1(3–4) (1980) 319–326. https://doi.org/10.1016/0167-2738(80)90012-0

Zheng Y, Wang J, Yu B, Zhang W, et al., A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology, Chem. Soc. Rev., 46 (2017) 1427–1463. https://doi.org/10.1039/C6CS00403B

Fadeev GI, Kalyakin AS, Somov SI, Electrode potentials of electrochemical cells with oxide-conducting solid electrolyte in chemically nonequilibrium gas mixtures, Russ. J. Electrochem., 45 (2009) 429–433. https://doi.org/10.1134/S1023193509040119

Volkov A, Neimin A, Sosnovsky V, Study of durability of the solid electrolyte electrochemical sensors with etalon electrodes of the Me-MexOy type at measuring of the oxygen concentration of the gaseous media (Issledovaniye dolgovechnosti tverdoelektrolitnykh electrokhimicheskikh datchikov s etalonnymi electrodami tipa Me-MexOy pri izmerenii kislorodsoderzhaniya gazovykh sred), Zavodskaya laboratoriya, 48 (1982) 6–8.

Zhuiykov S, Miura N. Solid-state electrochemical gas sensors for emission control. In book: Sorrell CC, Sugihara S, Nowotny J (eds) Materials for energy conversion devices. Woodhead Publishing: Cambridge; 2005. 303–335 pp. https://doi.org/10.1533/9781845690915.2.303

Park CO, Fergus JW, Miura N, Park J, Choi A, Solid-state electrochemical gas sensors, Ionics, 15 (2009) 261–284. https://doi.org/10.1007/s11581-008-0300-6

Kalyakin A, Demin A, Gorbova E, Volkov A, Tsiakaras A, Sensor Based on a Solid Oxide Electrolyte for Measuring the Water Vapor and Hydrogen Content in Air, Catalysts, 12(12) (2022) 1558. https://doi.org/10.3390/catal12121558

Shuk P, Bailey E, Guth U, Zirconia Oxygen Sensor for the Process Application: State-of-the-Art, Sens. Transducers, 90 (2008) 174–184. https://doi.org/10.1007/s11581-008-0274-4

Liu T, Jin H, Li L, Yu J, A novel method for preparing dense diffusion barrier limiting current oxygen sensor, J. Am. Ceram. Soc., 101(4) (2018) 1537–1543. https://doi.org/10.1111/jace.15302

Sekhar PK, Brosha EL, Mukundan R, Nelson MA, et al., Development and testing of a miniaturized hydrogen safety sensor prototype, Sens. Actuators B: Chem., 148(2) (2010) 469–477. https://doi.org/10.1016/j.snb.2010.05.031

Flege E, Vonau C, Guth U, Characterization of Pt,O2|YSZ electrodes for lambda probes and their ageing in humid atmosphere, Technisches Messen, 84(10) (2017) 635–643. https://doi.org/10.1515/teme-2016-0079

Lalauze R, Visconte E, Montanaro L, Pijolat C, A new type of mixed potential sensor using a thick film of beta alumina, Sens. Actuators B: Chem., 13(1–3) (1993) 241–243. https://doi.org/10.1016/0925-4005(93)85371-G

Guillet N, Lalauze R, Pijolat C, Oxygen and carbon monoxide role on the electrical response of a non-Nernstian potentiometric gas sensor; proposition of a model, Sens. Actuators B: Chem., 98(2–3) (2004) 130–139. https://doi.org/10.1016/j.snb.2003.10.001

Driesner O, Gumprecht F, Guth U, In situ measurements of O2 and CO eq. in cement kilns, J. Sens. Sens. Syst., 6(2) (2017) 327–330. https://doi.org/10.5194/jsss-6-327-2017

Chevallier L, Di Bartolomeo E, Grilli ML, Mainas M, et al., Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode, Sens. Actuators B: Chem., 129(2) (2008) 591–598. https://doi.org/10.1016/j.snb.2007.09.037

Park CO, Akbar SA, Weppner W, Ceramic electrolytes and electrochemical sensors, J. Mater. Sci., 38 (2003) 4639–4660. https://doi.org/10.1023/A:1027454414224

Katahiraa K, Matsumotoa H, Iwaharaa H, Koidea K, Iwamoto T, A solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard, Sens. Actuators B: Chem., 73(2–3) (2001) 130–134. https://doi.org/10.1016/S0925-4005(00)00672-9

Xia ChY, Lu XCh, Yan Y, Wang T, et al., Improved performances of oxygen potentiometric sensor by electrochemical activation, J. Solid State Electrochem., 16 (2012) 2523–2532. https://doi.org/10.1007/s10008-011-1556-8

Pasierb P, Rekas M, Solid-state potentiometric gas sensors–current status and future trends, J. Solid State Electrochem., 13 (2009) 3–25. https://doi.org/10.1007/s10008-008-0556-9

Möbius H-H, Hartung R, Solid-state potentiometric gas sensors–a supplement, J. Solid State Electrochem., 14 (2010) 669–673. https://doi.org/10.1007/s10008-009-0839-9

Pasierb P, Rekas M, Solid-state potentiometric gas sensors–current status and future trends, J. Solid State Electrochem., 13 (2009) 3–25. https://doi.org/10.1007/s10008-008-0556-9

Maskell WC, Steele BCH, Solid state potentiometric oxygen gas sensors, J. Appl. Electrochemistry, 16 (1984) 475–489. https://doi.org/10.1007/BF01006843

Iwahara H, Uchida H, Ogaki K, Nagato H, Nernstian hydrogen sensor using BaCeO3-based, proton-conducting ceramics operative at 200–900 °C, Journal of the Electrochemical Society, 138 (1991) 295–299. https://doi.org/10.1149/1.2085558

Chao Y, Yao S, Buttner WJ, Stetter JR, Amperometric sensor for selective and stable hydrogen measurement, Sens. Actuators B: Chem., 106(2) (2005) 784–790. https://doi.org/10.1016/j.snb.2004.09.042

Lu X, Wu S, Wang L, Su Z, Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell, Sens. Actuators B: Chem., 107(2) (2005) 812–817. https://doi.org/10.1016/j.snb.2004.12.022

Tan Y, Tan TC, Sensing behaviour of an amperometric hydrogen sensor, J. Electrochem. Soc., 142 (1995) 1923–1928. https://doi.org/10.1149/1.2044215

Sakthivel M, Weppner W, A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect, Int. J. Hydrogen Energy, 33(2) (2008) 905–911. https://doi.org/10.1016/j.ijhydene.2007.10.048

Kalyakin AS, Volkov AN, Meshcherskikh AN, Dunyushkina LA, Dual chamber YSZ‑based sensor for simultaneous measurement of methane and water vapor concentrations in CH4 + H2O + N2 gas mixtures, J. Solid State Electrochem., 26 (2022) 739–747. https://doi.org/10.1007/s10008-022-05116-y

Medvedev D. Kalyakin A, Volkov A, Demin A, Tsiakaras P, Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes, Electrochem. commun., 76 (2017) 55–58. https://doi.org/10.1016/j.elecom.2017.01.003

Taniguchi N, Kuroha T, Nishimura C, Iijima K, Characteristics of novel BaZr0.4Ce0.4In0.2O3 proton conducting ceramics and their application to hydrogen sensors, Solid State Ion., 176(39–40) (2005) 2979–2983. https://doi.org/10.1016/j.ssi.2005.09.035

Kalyakin AS, Medvedev DA Volkov AN, Electrochemical zirconia-based sensor for measuring hydrogen diffusion in inert gases, Journal of The Electrochemical Society, 169 (2022) 057530. https://doi.org/10.1149/1945-7111/ac725d

Bao J, Okuyama Y, Shi Z, Ohno H, et al., Properties of Electrical Conductivity in Y- Doped CaZrO3. Mater. Trans., 53 (2012) 973–979. https://doi.org/10.2320/matertrans.m2012017

Goppel W, Reinhardt G, Rasch M, Trends in development of solid state ampermetric and potentiometric high temperature sensors, Solid State Ion, 136(1–2) (2000) 519–531. https://doi.org/10.1016/S0167-2738(00)00410-0

Kalyakin AS, Volkov AN, Meshcherskikh AN, Dunyushkina LA, Dual chamber YSZ based sensor for simultaneous measurement of methane and water vapor concentrations in CH4 + H2O+ N2 gas mixtures, Journal of Solid State Electrochemistry, 26 (2022) 739–747. https://doi.org/10.1007/s10008-022-05116-y

Somov SI, Reinhardt G, Guth U, Göpel W, Tubular amperometric high-temperature sensors: simultaneous determination of oxygen, nitrogen oxides and combustible components, Sens. Actuators B: Chem., 65(1–3) (2000) 68–69. https://doi.org/10.1016/S0925-4005(99)00341-X

Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T, A solid electrolyte steam sensor with an еlectrochemically supplied hydrogen standard using proton-conducting oxides, Sens. Actuators B: Chem., 67(1–2) (2000) 189–193. https://doi.org/10.1016/S0925-4005(00)00400-7

Uchida H, Maeda N, Iwahara H, Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres, Solid State Ionics, 11(2) (1983) 117–124. https://doi.org/10.1016/0167-2738(83)90048-6




DOI: https://doi.org/10.15826/elmattech.2024.3.026

Copyright (c) 2024 Anatoly S. Kalyakin, Aleksander N. Volkov, Maxim Yu. Gorshkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.