Cover Image

Electrodeposition of alloys from halide melts in solid state

Andrey V. Isakov, Alexander A. Chernyshev, Alexey P. Apisarov, Yuri P. Zaikov

Abstract


This review manuscript considers the conditions of metal co-deposition to obtain alloys in the solid state by electrolysis of halide molten salts. The conditions for co-deposition below the melting point of the deposited components from molten salts are considered. The possibilities of the method for co-deposition of alloys from molten salts under the action of direct electric current were summarized. The review considers the main factors affecting the co-deposition process in the solid state, including thermodynamic and kinetic aspects. Methods for the synthesis of various alloys system (melting point of which can be above 1000 °C) and experimental approaches used to organize the process of joint electrodeposition were considered. The results of a comparative analysis of experimental data obtained under various synthesis conditions were presented in order to determine the dependences between the electrolysis parameters and the composition of the alloys.


Keywords


electrodeposition; alloys; co-deposition; halide melts

Full Text:

PDF

References


Moschetti M, Perrière L, Couzinié J-P, Kruzic JJ, Gludovatz B, A Novel Strategy for the Design of Compositionally Complex Alloys for Advanced Nuclear Applications, Appl. Mater. Today, 38 (2024) 102164. https://doi.org/10.1016/j.apmt.2024.102164

Mullin KM, Martin JH, Roper CS, Levi CG, Pollock TM, Transpiration Cooling of a Porous Nb-Based Alloy in High Heat Flux Conditions, International Journal of Thermal Sciences, 196 (2024) 108758. https://doi.org/10.1016/j.ijthermalsci.2023.108758

Wood RJK, Lu P, Coatings and Surface Modification of Alloys for Tribo-Corrosion Applications, Coatings, 14(1) (2024) 99. https://doi.org/10.3390/coatings14010099

Singh Tanwar R, Jhavar S, Ti Based Alloys for Aerospace and Biomedical Applications Fabricated through Wire + Arc Additive Manufacturing (WAAM), Mater. Today Proc., 98 (2024) 226–232. https://doi.org/10.1016/j.matpr.2023.11.121

Das A, Majumdar S, Insights into a Novel Refractory Multi Principal Element Alloy (Mo98W2)85Nb10(TiHf)5 and Advancements in Oxidation Resistance upto 1300 °C through Silicide Coatings, Scr. Mater., 245 (2024) 116063. https://doi.org/10.1016/j.scriptamat.2024.116063

Wen Y, Zhao Y, Zhang Z, Wu Y, et al., Electrodeposition of Ni-Mo Alloys and Composite Coatings: A Review and Future Directions, J. Manuf. Processes, 119 (2024) 929–951. https://doi.org/10.1016/j.jmapro.2024.03.099

Baraboshkin AN. Elektrokristallizatsiya metallov iz rasplavlennykh soley [Electrocrystallization of Metals from Molten Salts]. Moscow: Nauka; 1976. 99–106 pp. Russian.

Gu Y, Liu J, Qu S, Deng Y, et al., Electrodeposition of Alloys and Compounds from High-Temperature Molten Salts, J. Alloys Compd., 690 (2017) 228–238, https://doi.org/10.1016/j.jallcom.2016.08.104

Zhu L, Wang J, Wang Z, Ye Y, et al., Morphologies and Textures of Rhenium Coatings Electrodeposited in Chloride Molten Salts, Surf. Coat. Technol., 428 (2021) 127887. https://doi.org/10.1016/j.surfcoat.2021.127887

Yuan W, Zhu L, Zhang H, Feng S, et al., Surface Morphology, Microstructure and Emissivity of Rhenium Electrodeposited from Molten Salts, Surf. Coat. Technol., 474 (2023) 130122. https://doi.org/10.1016/j.surfcoat.2023.130122

Qi Y, Tang Y, Wang B, Zhang M, et al., Characteristics of Tungsten Coatings Deposited by Molten Salt Electro-Deposition and Thermal Fatigue Properties of Electrodeposited Tungsten Coatings, Int. J. Refract. Metals Hard Mater., 81 (2019) 183–188. https://doi.org/10.1016/j.ijrmhm.2019.03.006

Laptev M, Khudorozhkova A, Isakov A, Grishenkova O, et al., Electrodeposition of Aluminum-Doped Thin Silicon Films from a KF-KCl-KI-K2SiF6-AlF3 Melt, Journal of the Serbian Chemical Society, 86 (2021) 1075–1087. https://doi.org/10.2298/JSC200917065L

McKechnie T, Hasanof T, Shchetkovskiy A, Zaluki M, et al. Green Monopropellant 100mN Thruster. In: Proceedings of the AIAA Propulsion and Energy 2021 Forum; 2021 August 9–11; American Institute of Aeronautics and Astronautics: Reston, Virginia. https://doi.org/10.2514/6.2021-3591

Anflo K, Mollerberg R, Neff K, King P. High Performance Green Propellant for Satellite Applications. In: Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2009 August 2–5; American Institute of Aeronautics and Astronautics: Denver, Colorado. https://doi.org/10.2514/6.2009-4878

Isakov AV, Nikitina AO, Apisarov AP, Electrowinning and Annealing of Ir–Re–Ir Material, Tsvetnye Metally, 11 (2017) 55–60. https://doi.org/10.17580/tsm.2017.11.10

Ding D, Jin W, Luo W, Ge C, et al., Preparation of Al/TiC Nanocomposite Coatings on 304 Stainless Steel via Electrodeposition in Inorganic Molten Salts, Int. J. Electrochem. Sci., 16 (2021) 21114. https://doi.org/10.20964/2021.11.06

Qi W, Ding D, Luo W, Jin W, et al., Production of Al–Mn/WC Composite Coatings with Electrodeposition in AlCl3–NaCl–KCl–MnCl2 Molten Salts, Coatings, 13 (2023) 1246. https://doi.org/10.3390/coatings13071246

Zhang K, Zhu L, Bai S, Ye Y, et al., Ablation Behavior of an Ir-Hf Coating: A Novel Idea for Ultra-High Temperature Coatings in Non-Equilibrium Conditions, J. Alloys Compd., 818 (2020) 152829. https://doi.org/10.1016/j.jallcom.2019.152829

Zhu L, Bai S, Zhang H, Ye Y, Gao W, Rhenium Used as an Interlayer between Carbon–Carbon Composites and Iridium Coating: Adhesion and Wettability, Surf. Coat. Technol., 235 (2013) 68–74. https://doi.org/10.1016/j.surfcoat.2013.07.013

Gupta SK, Mao Y, Recent Developments on Molten Salt Synthesis of Inorganic Nanomaterials: A Review, The Journal of Physical Chemistry C, 125 (2021) 6508–6533. https://doi.org/10.1021/acs.jpcc.0c10981

Gupta SK, Mao Y, A Review on Molten Salt Synthesis of Metal Oxide Nanomaterials: Status, Opportunity, and Challenge, Prog. Mater. Sci., 117 (2021) 100734, https://doi.org/10.1016/j.pmatsci.2020.100734

Engelken RD, Ionic Electrodeposition of II–VI and III–V Compounds: IV. Deposition of Both Elements and Compound Positive of the Pure Element Reversible Potentials: Pure Underpotential Deposition, J. Electrochem. Soc., 135 (1988) 834–839. https://doi.org/10.1149/1.2095787

Saltykova NA, Portnyagin OV, Electrodeposition of Ir–Ru Alloys from Chloride Melts: Steady-State Potentials and Cathodic Processes, Russian Journal of Electrochemistry, 36 (2000) 784–788. https://doi.org/10.1007/BF02757681

Saltykova NA, Portnyagin OV, Electrodeposition of Iridium–Ruthenium Alloys from Chloride Melts: The Structure of the Deposits, Russian Journal of Electrochemistry, 37 (2001) 924–930. https://doi.org/10.1023/A:1011944226271

Etenko A, McKechnie T, Shchetkovskiy A, Smirnov A, Oxidation-Protective Iridium and Iridium-Rhodium Coating Produced by Electrodeposition from Molten Salts, ECS Trans., 3 (2007) 151–157. https://doi.org/10.1149/1.2721466

Lee Y-J, Lee T-H, Nersisyan HH, Lee K-H, et al., Characterization of Ta–W Alloy Films Deposited by Molten Salt Multi-Anode Reactive Alloy Coating (MARC) Method, Int. J. Refract. Metals Hard Mater., 53 (2015) 23–31. https://doi.org/10.1016/j.ijrmhm.2015.04.022

Lee Y-J, Park D-J, Kang K-S, Bae G-G, et al. Molten Salt Multi-Anode Reactive Alloy Coating (Marc) of Ta-W Alloy on Sus316l. In: Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing; 2013; Springer International Publishing: Cham. pp. 1975–1981. https://doi.org/10.1007/978-3-319-48764-9_245

Polyakova LP, Taxil P, Polyakov EG, Electrochemical Behaviour and Codeposition of Titanium and Niobium in Chloride–Fluoride Melts, J. Alloys Compd., 359 (2003) 244–255. https://doi.org/10.1016/S0925-8388(03)00180-4

Zhang S, Hu K, Zhao X, Liang J, Li Y, Study on Diffusion Kinetics of Chromium and Nickel Electrochemical Co-Deposition in a NaCl–KCl–NaF–Cr2O3–NiO Molten Salt, High Temperature Materials and Processes, 42(1) (2023) 20220276. https://doi.org/10.1515/htmp-2022-0276

Ahmad I, Spiak WA, Janz GJ, Electrodeposition of Tantalum and Tantalum-Chromium Alloys, J. Appl. Electrochem., 11 (1981) 291–297. https://doi.org/10.1007/BF00613946

Ueda M, Hayashi H, Ohtsuka T, Electrodeposition of Al–Pt Alloys Using Constant Potential Electrolysis in AlCl3–NaCl–KCl Molten Salt Containing PtCl2, Surf. Coat. Technol., 205 (2011) 4401–4403. https://doi.org/10.1016/j.surfcoat.2011.03.051

Sato K, Matsushima H, Ueda M, Electrodeposition of Al-Ta Alloys in NaCl-KCl-AlCl3 Molten Salt Containing TaCl5, Appl. Surf. Sci., 388 (2016) 794–798. https://doi.org/10.1016/j.apsusc.2016.03.001

Ueda M, Kigawa H, Ohtsuka T, Co-Deposition of Al–Cr–Ni Alloys Using Constant Potential and Potential Pulse Techniques in AlCl3–NaCl–KCl Molten Salt, Electrochim. Acta, 52 (2007) 2515–2519. https://doi.org/10.1016/j.electacta.2006.09.001

Gussone J, Vijay CRY, Watermeyer P, Milicevic J, et al., Electrodeposition of Titanium–Vanadium Alloys from Chloride-Based Molten Salts: Influence of Electrolyte Chemistry and Deposition Potential on Composition, Morphology and Microstructure, J. Appl. Electrochem., 50 (2020) 355–366. https://doi.org/10.1007/s10800-019-01385-0

Okamoto H, The Ir-Ru (Iridium-Ruthenium) System, J. Phase Equilib., 13 (1992) 565–567. https://doi.org/10.1007/BF02665768

Chamelot P, Palau P, Massot L, Savall A, Taxil P, Electrodeposition Processes of Tantalum(V) Species in Molten Fluorides Containing Oxide Ions, Electrochim. Acta, 47 (2002) 3423–3429. https://doi.org/10.1016/S0013-4686(02)00278-5

Smith JF, The Deposition of Chromium from a Fused Fluoride Electrolyte, Thin Solid Films, 95 (1982) 151–160. https://doi.org/10.1016/0040-6090(82)90237-1

Turchi PEA, Abrikosov IA, Burton B, Fries SG, et al., Interface between Quantum-Mechanical-Based Approaches, Experiments, and CALPHAD Methodology, Calphad, 31 (2007) 4–27. https://doi.org/10.1016/j.calphad.2006.02.009

Ankem S, Margolin H, Greene C, Neuberger B, Oberson P, Mechanical Properties of Alloys Consisting of Two Ductile Phases, Prog. Mater. Sci., 51 (2006) 632–709. https://doi.org/10.1016/j.pmatsci.2005.10.003

Cochrane RW, Harris R, Zuckermann MJ, The Role of Structure in the Magnetic Properties of Amorphous Alloys, Phys. Rep., 48 (1978) 1–63. https://doi.org/10.1016/0370-1573(78)90012-1

Whang SH. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications. Elsevier: Amsterdam, The Netherlands; 2011. 840 p.

Schoenitz M, Dreizin EL, Structure and Properties of Al–Mg Mechanical Alloys, J. Mater. Res., 18 (2003) 1827–1836. https://doi.org/10.1557/JMR.2003.0255

Vinogradov-Zhabrov ON, Minchenko LM, Esina NO, Pankratov AA, Electrodeposition of Rhenium from Chloride Melts: Electrochemical Nature, Structure and Applied Aspects, Journal of Mining and Metallurgy, Section B: Metallurgy, 39 (2003) 149–166. https://doi.org/10.2298/JMMB0302149V

Li F, Zhu L, Zhang K, Wang Z, et al., Oxidation Behaviors of Ir-Hf and Ir-Zr Coatings under Different Air Pressures at 1800 °C, Surf. Coat. Technol., 466 (2023) 129640. https://doi.org/10.1016/j.surfcoat.2023.129640

Zhang K, Zhu L, Bai S, Ye Y, et al., Ablation Behavior of an Ir-Hf Coating: A Novel Idea for Ultra-High Temperature Coatings in Non-Equilibrium Conditions, J. Alloys Compd., 818 (2020) 152829. https://doi.org/10.1016/j.jallcom.2019.152829

Yang L, Jing L, Zhang J, Liu L, et al., New Insights on the Ablation Mechanism of Silicon Carbide in Dissociated Air Plasmas, Aerosp. Sci. Technol., 129 (2022) 107863. https://doi.org/10.1016/j.ast.2022.107863

Cui E, Wang C, Zuo Y, Leng B, et al., Preparation of Iridium hafnium Intermetallic Compound Coatings in Molten Salts, Surf. Coat. Technol., 427 (2021) 127821. https://doi.org/10.1016/j.surfcoat.2021.127821




DOI: https://doi.org/10.15826/elmattech.2024.3.036

Copyright (c) 2024 Andrey V. Isakov, Aleksandr A. Chernyshev, Alexey P. Apisarov, Yuri P. Zaikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.