Cover Image

(Y0.82La0.18)3Fe5O12–x: structure and transport properties

Sergey N. Shkerin, Anna S. Tolkacheva, Sergey V. Naumov, Olga I. Gyrdasova, Anton E. Stepanov

Abstract


The nonstoichiometry in well-known rare-earth metal ferrite garnets is discussed in the concept of a mayenite analogue. Crystals are grown by floating zone method in different atmospheres. The content of oxygen during the growth process determines its crystal structure: only in an oxygen atmosphere (7 atm) is it possible to obtain a single-phase crystal. The phase decomposes with precipitation of iron oxide when the content of oxygen is lower. The decomposition is also induced by the replacement of Y with a large cation La in Y3Fe5O12. The fibers of the perovskite phase form along the crystal growth direction. The high mobility of anions and electron conductivity are shown by the method of isotopic equilibration with the gas phase on single-crystal garnet composites.

Keywords


rare-earth metal ferrite garnet; anions conductivity; electron conductivity; single crystal

Full Text:

PDF

References


Heraeus WC. Uber die elektrolytische Leitung Fester Korper bei sehr hohen. Temperaturen, Elektrochem., 6(2) (1899) 41–43. https://doi.org/10.1002/bbpc.18990060205

Ishihara T, Matsuda H, Takita Y, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, J. Am. Ceram. Soc., 116 (1994) 3801–3803. https://doi.org/10.1021/ja00088a016

Feng M, Goodenough JB, A superior oxide-ion electrolyte, European Journal of Solid State and Inorganic Chemistry, 31 (1994) 663–672. https://doi.org/10.1002/CHIN.199507014

Liu H, Yuan L, Wang S, Fang H, et al., Structure, optical spectroscopy properties and thermochromism of Sm3Fe5O12 garnets, J. Mater. Chem. C, 4 (2016) 10529–10537. https://doi.org/10.1039/c6tc02830f

Yamagishi T, Awaka J, Kawashima Y, Uemura M, et al., Ferrimagnetic order in the mixed garnet (Y1-xGdx)3Fe5O12, Philos. Mag., 85(17) (2005–2006), 1819–1833. https://doi.org/10.1080/09500830500038092

Phan MH, Morales MB, Chinnasamy CN, Latha B, et al., Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials, J. Phys. D: Appl. Phys., 42 (2009) 115007. https://doi.org/10.1088/0022-3727/42/11/115007

Al-Omari IA, Skomski R, Sellmyer DJ, Magnetic Properties of Y3-2xCa2xFe5-xVxO12 Garnets, AMPC, 2 (2012) 116–120. https://doi.org/10.4236/ampc.2012.23019

Jiang L, Yang Sh, Zheng M, Chen H, Wu A, Synthesis and magnetic properties of nanocrystalline Gd3Fe5O12 and GdFeO3 powders prepared by sol–gel auto-combustion method, Mater. Res. Bull., 104 (2018) 92–96. https://doi.org/10.1016/j.materresbull.2018.04.010

Cherepanov V, Kolokolov I, L'vov V, The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet, Phys. Rep., 229(3) (1993) 81–144. https://doi.org/10.1016/0370-1573(93)90107-O

Gomez-Perez JM, Oyanagi K, Yahiro R, Ramos R, Absence of evidence of spin transport through amorphous Y3Fe5O12, Appl. Phys. Lett., 116(3) (2020) 032401. https://doi.org/10.1063/1.5119911

Fechine PBA, Moretzsohn RST, Costa RCS, Derov J, et al., Magneto-dielectric properties of the Y3Fe5O12 and gd3fe5o12 dielectric ferrite resonator antennas, ASB Microw. Opt., 50(11) (2008) 2852–2857. https://doi.org/10.1002/mop.23824

Guo X, Rak Zs, Tavakoli AH, Becker U, et al., Thermodynamics of thorium substitution in yttrium iron garnet: comparison of experimental and theoretical results, J. Mater. Chem. A, 2 (2014) 16945–16954. https://doi.org/10.1039/c4ta03683b

Guo X, Rak Zs, Tavakoli AH, Sutton S, et al., Cerium Substitution in Yttrium Iron Garnet: Valence State, Structure, and Energetics, Chem. Mater., 26(2) (2014) 1133–1143. https://doi.org/10.1021/cm403444f

Guo X, Kukkadapu RK, Lanzirotti A, Newville M, et al., Charge-Coupled Substituted Garnets (Y3−xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms, Inorg. Chem., 54(8) (2015) 4156–4166. https://doi.org/10.1021/acs.inorgchem.5b00444

Guo X, Navrotsky A, Kukkadapu RK, Engelhard MH, et al., Structure and thermodynamics of uranium-containing iron garnets, Geochimica et Cosmochimica Acta, 189 (2016) 269–281. https://doi.org/10.1016/j.gca.2016.05.043

Long GJ, Grandjean F, Guo X, Navrotsky A, et al., Mossbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and Its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions, Inorg. Chem., 55(7) (2016) 3413–3418. https://doi.org/10.1021/acs.inorgchem.5b02769

Navrotsky A, Lee W, Mielewczyk-Gryn A, Ushakov SV, et al., Thermodynamics of Solid Phases Containing Rare Earth Oxides, J. Chem. Thermodyn., 88 (2015) 126–141. https://doi.org/10.1016/j.jct.2015.04.008

Becker S, Ren Z, Fuhrmann F, Ross A, et al., Magnetic Coupling in Y3Fe5O12/Gd3Fe5O12 Heterostructures, Phys. Rev. Applied, 16 (2021) 014047. https://doi.org/10.1103/PhysRevApplied.16.014047

Mullerbuschbaum H, Vonpostel M, Eine weitere Oxovanadat-Phase mit Granatstruktur: Ca5Mg3ZnV6O2, Allg. Chem., 615(9) (1992) 101–103. https://doi.org/10.1002/zaac.19926150920

Baettig P, Oguchi T, Why Are Garnets Not Ferroelectric? A Theoretical Investigation of Y3Fe5O12, Chem. Mater., 20 (2008) 7545–7550 https://doi.org/10.1021/cm801786h

Shkerin SN, Tolkacheva AS, Mayenite (A Review), Russian Journal of General Chemistry, 92(11) (2022) 2312–2333. https://doi.org/10.1134/S1070363222110160

Larsen PK, Metselaar R, Defects and the Electronic Properties of Y3Fe5O12, J. Solid State Chem., 12(3–4) (1975) 254–258. https://doi.org/10.1016/0022-4596(75)90315-1

KJacob KT, Rajitha G, Nonstoichiometry, defects and thermodynamic properties of YFeO3, YFe2O4 and Y3Fe5O12, Solid State Ion., 224 (2012) 32–40 https://doi.org/10.1016/j.ssi.2012.07.003

Huang S, Shi LR, Sun HG, Li CL, et al., High temperature dielectric response in Sm3Fe5O12 ceramics, J. Alloys Compd., 674 (2016) 341–346. https://doi.org/10.1016/j.jallcom.2016.03.001

Kharton VV, Shaula AL, Naumovich EN, Vyshatko NP, et al., Ionic Transport in Gd3Fe5O12- and Y3Fe5O12-Based Garnets, J. Electrochem. Soc., 150(7) (2003) J33–J42. https://doi.org/10.1149/1.1574810

Waerenborgh JC, Rojas DP, Shaula AL, Kharton VV, et al., Defect formation in Gd3Fe5O12-based garnets: a Mfssbauer spectroscopy study, Mater Lett., 58 (2004) 3432–3436. https://doi.org/10.1016/j.matlet.2004.05.081

Paladino AE, Maguire EA, Rubin LG, Oxygen Ion Diffusion in Single-Crystal and PoIycrystaIIine Yttrium Iron Garnet, J. Am. Ceram. Soc., 47(6) (1964) 280–282. https://doi.org/10.1111/j.1151-2916.1964.tb14416.x

Kilner JA, Steele BCH, Ilkov L, Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS), Solid State Ion., 12 (1984) 89–97. https://doi.org/10.1016/0167-2738(84)90134-6

Shkerin SN, Ulyanova ES, Naumov SV, Shmakov AN, et al., The interaction of defects in a mayenite structure, Phys. Chem. Chem. Phys., 22 (2020) 27818–27828. https://doi.org/10.1039/d0cp05107a

Tolkacheva AS, Shkerin SN, Porotnikova NM, Kuznetsov MV, et al., Oxygen surface exchange and diffusion in mayenite single crystal, Phys. Chem. Chem. Phys., 21 (2019) 24740–24748. https://doi.org/10.1039/C9CP04936C

Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, et al., High oxide ion conductivity below 500 °C in the garnets

LaxY3-xFe5O12+δ, Phys. Rev. Mater., 1 (2017) 015001. https://doi.org/10.1103/PhysRevMaterials.1.015001

Yousaf M, Akhtar MN, Yousaf Shah MAK, Rauf S, et al., Evaluation of rare earth (Yb, La) doped (Sm3Fe5O12) garnet ferrite membrane for LT-SOFC, Int. J. Hydrogen Energy., 46 (2021) 9996–10006. https://doi.org/10.1016/j.ijhydene.2020.01.166

Gyrdasova OI, Stepanov AE, Naumov SV, Shkerin SN, The influence of synthesis conditions on the formation of the Y3-xLaxFe5-yO12+δ/La1-xYxFe1-yO3 composite, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, 14 (2022) 583–592. (In Russian). https://doi.org/10.26456/pcascnn/2022.14.583

Gyrdasova OI, Pasechnik LA, Krasilnikov VN, Surikov VT, Kuznetsov MV, Sorption and photocatalytic activity of

Zn1-xCuxO (x = 0.05 and 0.15) to As(III) in alkaline medium, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, 12 (2020) 792–804. (In Russian). https://doi.org/10.26456/pcascnn/2020.12.792

Ezin AN, Tsidilkovski VI, Kurumchin EKh, Isotopic exchange and diffusion of oxygen in oxides with different bulk and subsurface diffusivities, Solid State Ion., 84(1–2) (1996) 105–112. https://doi.org/10.1016/S0167-2738(96)83012-8

Klier K, Kučera E, Theory of exchange reactions between fluids and solids with tracer diffusion in the solid, J. Phys. Chem. Solids, 27(6–7) (1966) 1087–1095. https://doi.org/10.1016/0022-3697(66)90084-9

Mizusaki J, Mima Y, Yamauchi S, Fueki K, et al., Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ, Solid State Chem., 80(1) (1989) 102–111. https://doi.org/10.1016/0022-4596(89)90036-4

Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, et al., Oxygen isotope exchange in La2NiO4±d, Phys. Chem. Chem Phys., 18 (2016) 9102–9111. https://doi.org/10.1039/C5CP05984D

Lyubutin IS, Gavriliuk AG, Trojan IA, Sadykov RA, Magnetic Collapse in Yttrium Iron Garnet Y3Fe5O12 at High Pressure, Jetp. Lett., 82 (2005) 702–707. https://doi.org/10.1134/1.2171723

Rotman S, Tuller H, Defect-Property Correlations in Garnet Crystals. *VII: The Electrical Conductivity and Defect Structure of Yttrium Aluminum and Yttrium Iron Garnet Solid Solutions, J. Electroceram., 2 (1998) 95–104. https://doi.org/10.1023/A:1009974923893

Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, et al., Oxygen Ionic and Electronic Transport in LaGa12xNixO32d Perovskites, J. Solid State Chem., 142(2) (1999) 325–335. https://doi.org/10.1006/jssc.1998.8041

Elshof JE, Lankhorst MHR, Bouwmeester HJM, Oxygen Exchange and Diffusion Coefficients of Strontium-Doped Lanthanum Ferrites by Electrical Conductivily Relaxation, J. Electrochem Soc., 144(3) (1997) 1060–1066. https://doi.org/10.1149/1.1837531




DOI: https://doi.org/10.15826/elmattech.2024.3.046

Copyright (c) 2024 Sergey N. Shkerin, Anna S. Tolkacheva, Sergey V. Naumov, Olga I. Gyrdasova, Anton E. Stepanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.