Cover Image

Thermal expansion of alkali and alkaline earth halides in solid and molten states

Olga Yu. Tkacheva

Abstract


Thermophysical properties of the alkali and alkaline earth halides, widely used in numerous electrochemical technological processes, are necessary for the design and operation of various devices in a wide temperature range. This review discusses the thermal expansion coefficients of solid and molten salts of the alkali and alkaline earth fluorides and chlorides, the regularities of their change depending on the nature, molar volume and temperature. The thermal expansion of the solid alkali and alkaline earth halides in the range from room temperature to the melting point does not obey a linear law. When salts melt, the thermal expansion coefficient increases, and the increase is greater the larger the cation size. In the liquid state, the temperature dependence of the volumetric thermal expansion coefficient is linear and changes slightly with temperature. The dependence of the thermal expansion of all molten alkali halides on the molar volume can be described by a linear function, which indicates the uniformity of interparticle interactions in these salts and the ionic nature of the bond. For fluorides and chlorides of alkaline earth metals, such a dependence is more complex.

Keywords


alkali and alkaline earth halides; thermal expansion coefficient; melt; solid; molar volume

Full Text:

PDF

References


Tiwari R, Devendra K, Dipendra KV, Parwati K, et al., Fundamental chemical and physical properties of electrolytes in energy storage devices: A review, J. Energy Storage., 81 (2024) 110361. https://doi.org/10.1016/j.est.2023.110361

Bo C, Phase change behaviour of some latent heat storage media based on calcium chloride hexahydrate, Solar Energy, 83(4) (2009) 485–500. https://doi.org/10.1016/j.solener.2008.09.004

Tao B, Zhong D, Li H, Wang G, et al., Halide solid-state electrolytes for all-solid-state batteries: structural design, synthesis, environmental stability, interface optimization and challenges, Chem. Sci., 14 (2023) 8693–8722. https://doi.org/10.1039/d3sc02093b

Babaev BD, Principles of heat accumulation and heat accumulating materials in use, High Temperature, 52(5) (2014) 736–751. https://doi.org/10.1134/S0018151X14050010

Redkin A, Apisarov A, Dedyukhin A, Kovrov V, et al., Recent developments in low-temperature electrolysis of aluminum, ECS Transactions, 50(11) (2012) 205–213. https://doi.org/10.1149/05011.0205ecst

Zaikov Yu, Batukhtin V, Shurov N, Suzdaltsev A, High-temperature electrochemistry of calcium, Electrochem. Mater. Technol., 1 (2022) 20221007. https://doi.org/10.15826/elmattech.2022.1.007

Haarberg GM. Alkali and Alkaline Earth Metal Production by Molten Salt. In: Kreysa G, Ota K, Savinell RF. (eds) Encyclopedia of Applied Electrochemistry. New York, United States: Springer; 2014. p. 21–25. https://doi.org/10.1007/978-1-4419-6996-5_451

Wang Z, Cheng Y, He F, Lv Z, Electroplating of refractory metals in molten salts: A Review, JOM, 76(8) (2024) 4050–4067. https://doi.org/10.1007/s11837-024-06695-z

Fache M, Voigt L, Colle JY, Hald J, et al., Thermophysical properties of FUNaK (NaF-KF-UF4) eutectics, Materials, 17(11) (2024) 2776. https://doi.org/10.3390/ma17112776

Magnusson J, Memmott M, Munro T, Review of thermophysical property methods applied to fueled and un-fueled molten salts, Annals of Nuclear Energy, 146 (2020) 107608. https://doi.org/10.1016/j.anucene.2020.107608

Barnes J, Coutts R, Horne T, Thai J, Characterization of molten salt for application in molten salt reactors, PAM Review Energy Science and Technology, 6 (2019) 39–54. https://doi.org/10.5130/pamr.v6i0.1546

Mullin KM, Martin JH, Roper CS, Levi CG, et al., Transpiration cooling of a porous Nb-based alloy in high heat flux conditions, Inter. J. Thermal Sci., 196 (2024) 108758. https://doi.org/10.1016/j.ijthermalsci.2023.108758

Wood RJK, Lu P, Coatings and surface modification of alloys for tribo-corrosion applications, Coatings, 14(1) (2024) 99. https://doi.org/10.3390/coatings14010099

Ivanova A, Arkhipov P, Tkacheva O, Zaykov Yu, Experimental studies of the dynamic formation of the side ledge in an aluminum electrolysis cell, Russian Metallurgy (Metally), 2 (2020) 133–137. https://doi.org/10.1134/S0036029520020068

Tkacheva O, Arkhipov P, Kataev A, Rudenko A, et al., Solid phase formation during aluminium electrolysis, Electrochemistry Communications, 110 (2020) 106624. https://doi.org/10.1016/j.elecom.2019.106624

Isakov A, Chernyshev A, Apisarov A, Zaikov Yu, Electrodeposition of alloys from halide melts in solid state, Mater. Technol., 3 (2024) 20243036. https://doi.org/10.15826/elmattech.2024.3.036

Sato T, Ohashi K, Sudoh T, Haruna K, et al., Thermal expansion of a high purity synthetic diamond single crystal at low temperatures, Phys. Rev. B, 65 (2002) 092102. https://doi.org/10.1103/PhysRevB.65.092102

Bhaduri A. Mechanical Properties and Working of Metals and Alloys. Singapore: Springer Nature Singapore Pte Ltd.; 2018. 748 p. https://doi.org/10.1007/978-981-10-7209-3

Nedoseka A. Fundamentals of Evaluation and Diagnostics of Welded Structures. Cambridge, United Kingdom: Cambridge International Science Publishing Limited in association with Woodhead Publishing Limited; 2012. 639 p.

Mary TA, Evans JSO, Vogt T, Sleight AW, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science, 272 (1996) 90–92. https://doi.org/10.1126/science.272.5258.90

Cahn RW, The how and why of thermal contraction, Nature, 386 (1997) 22–23. https://doi.org/10.1038/386022b0

Dubey D, Mirhakimi AS, Elbestawi MA, Negative thermal expansion metamaterials: A review of design, fabrication, and applications, J. Manuf. Mater. Process., 8(1) (2024) 40. https://doi.org/10.3390/jmmp8010040

James JD, Spittle JA, Brown SGR, Evans RW, A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures, Meas. Sci. Technol., 12 (2001) R1–R15. https://doi.org/10.1088/0957-0233/12/3/201

Ventura G, Risegari L. The art of cryogenics: low-temperature experimental techniques. Chapter 13. Measurements of thermal expansion. London, UK: Elsevier Ltd.; 2007. p. 289–296. https://doi.org/10.1016/B978-0-08-044479-6.X5001-8

Pathak PD, Vasavada NG, Thermal expansion of NaCI, KCI and CsBr by X–ray diffraction and the law of corresponding states, Acta Cryst., A26 (1970) 655–658. https://doi.org/10.1107/S0567739470001602

Hallam KR, Darnbrough JE, Paraskevoulakos C, Peter J, et al., Measurements by X-ray diffraction of the temperature dependence of lattice parameter and crystallite size for isostatically-pressed graphite, Carbon Trends, 4 (2021) 100071. https://doi.org/10.1016/j.cartre.2021.100071

Rao ASM, Narender K, Rao KGK, Krishna NG, Thermophysical properties of NaCl, NaBr and NaF by gamma–Ray Attenuation Technique, J. Modern Physics, 4 (2013) 208–214. http://dx.doi.org/10.4236/jmp.2013.42029

Flament C, Berthel B, Salvia M, at el. Characterization of the thermal behavior of a complex composite (clutch facing) combining digital image stereo correlation and numerical approach, Materials, 15 (2022) 2582–2605. https://doi.org/10.3390/ma15072582

Measurement of thermal expansion coefficient using strain gages. Micro-measurements. Vishay Precision Group, Tech. Note TN-513-1, Vishay Measurement Group, Document Number: 11063, (2010) 119–129.

Wallace G, Speer W, Ogren J, Es-Said OS, High-resolution methods for measuring the thermal expansion coefficient of aerospace materials, J. Mater. Engineering and Performance, 14 (2005) 563–564. https://doi.org/10.1361/105994905X64602

American Society for Testing and Materials. ASTM E289-2017. Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry (2017).

Cantor S, Metal dilatometer for determining density and expansivity of volatile liquids at elevated temperature, Rev. Sci. Instrum, 40 (1969) 967–968. https://doi.org/10.1063/1.1684132

Parker SS, Abdul‑Jabbar NM, Jackson JM, Monreal M, Feasibility of volumetric expansion of molten chlorides by conventional pushrod dilatometry, Radioanal. and Nucl. Chem., 331 (2022) 5259–5263. https://doi.org/10.1007/s10967-022-08641-2

Barron THK, Collins JG, White GK, Thermal expansion of solids at low temperatures, Advances in Physics, 29(4) (1980) 609–730. https://doi.org/10.1080/00018738000101426

Park J, Leong A, Zhang J, Density Measurements of Molten Salts, J. Chem. Eng. Data, 68(8) (2023) 1892–1898. https://doi.org/10.1021/acs.jced.3c00171

Vidrio P, Mastromarino S, Still E, et al., Density and thermal expansivity of molten 2LiF-BeF2 (FLiBe): measurements and uncertainty quantification, J. Chem. Eng. Data, 67 (2022) 3517–3533. https://doi.org/10.1021/acs.jced.2c00212

Parker SS, Long A, Lhermitte C, Vogel, et al. Thermophysical properties of liquid chlorides from 600 to 1600 K: Melt point, enthalpy of fusion, and volumetric expansion, J. Mol. Liq., 346 (2022) 118147. https://doi.org/10.1016/j.molliq.2021.118147

Cantor S, Ward WT, Moynihant CT, Viscosity and density in molten BeF2-LiF solutions, J. Chem. Phys., 50(7) (1969) 2874–2879. https://doi.org/10.1063/1.1671478

Yates B, Panter CH, Thermal expansion of alkali halides at low temperatures, Proc. Phys. Soc., 80 (1962) 373–382. https://doi.org/10.1088/0370-1328/80/2/304

Sanditov DS, Mantatov VV, Darmaev MV, Sanditov BD, O parametre Gryunayzena kristallov i stekol. [On the Gruneisen parameter of crystals and glasses], Techn. Phys. 79 (2009) 59–62. Russian.

Porter LJ, Justo JF, Yip S, The importance of Grüneisen parameters in developing interatomic potentials, J. Applied Physics, 82(11) (1997) 5378–5385. https://doi.org/10.1063/1.366305

Redmond AD, Yates B, The low temperature thermal expansion of thallous chloride and thallous bromide, J. Phys. C: Solid State Phys., 5 (1972) 1589–1603. https://doi.org/10.1088/0022-3719/5/13/009

Sunil K, Sharma BS, Thermoelastic properties of alkali halides at high temperatures, Indian journal of pure & applied physics, 50(6) (2012) 387–397.

Srivastava SK, Sinha P, Analysis of thermal expansion of NaCl and KCl crystals, Indian J. Phys., 85 (2011) 1257–1265. https://doi.org/10.1007/s12648-011-0151-2

Enck FD, Dommel JG, Behavior of the thermal expansion of NaCl at elevated temperatures, J. Applied Physics, 36(3) (1965) 839–844. https://doi.org/10.1063/1.1714229

Leadbetter AJ, Newsham DMT, Anharmonic effects in the thermodynamic properties of solids. A liquid gallium immersion dilatometer for the range 50–700 °C: thermal expansivities of Hg, Ga, NaCl and KCl, J. Phys. C: Solid State Physics, 2(2) (1969) 210–219. https://doi.org/10.1088/0022-3719/2/2/303

Pathak PD, Vasavada NG, Thermal expansion of LiF by X–ray diffraction and the temperature variation of its frequency spectrum, Acta Crystallographica, A28 (1972) 30–33. https://doi.org/10.1107/S0567739472000063

Ekinci Y, Toennies JP, Thermal expansion of the LiF(001) surface, Science, 563(1–3) (2004) 127–134. https://doi.org/10.1016/j.susc.2004.06.147

Sharma SS, Thermal expansion of crystals, Proc. Indian Acad. Sci. (Math. Sci.), 33 (1951) 283. https://doi.org/10.1007/BF03173262

Pathak PD, Pandya NV, Ghadiali MP, Thermal expansion of some alkali fluorides and magnesium oxide by X-ray diffraction, Indian J. Phys., 37 (1963) 293–298.

Panter CH, Thermal expansion of caesium bromide and potassium bromide, J. Phys. C: Solid State Physics, 7 (1974) 4483–4485. https://doi.org/10.1088/0022-3719/7/24/010

Anderson OL. Equation of state of solids for geophysics and ceramic science, New York, United States: Oxford University Press; 1995. 370 p. https://doi.org/10.1093/oso/9780195056068.001.0001

Smirnov MV, Khokhlov VA, Khokhlov VA, et al., Fiziko-khimicheskiye svoystva rasplavlennykh ftoridov shchelochnykh metallov [Physicochemical properties of molten alkali metal fluorides], J. Phys. Chemistry, 48 (1974) 467–469. Russian

Chrenková M, Danek V, Silný V, Density of the System LiF–KF–K2NbF7, Chem. Papers, 54 (2000) 272–276.

Abdullaev RN, Khairulin RA, Stankus SV, Density and thermal expansion of liquid salts LiF and LiF–NaF, Thermoph. and Aeromech., 30 (2023) 133–136. https://doi.org/10.1134/S0869864323010158

Janz GJ, Dampier FW, Lakshminarayanan GR, Lorenz PK, et al. Molten Salts: Volume 1, Electrical Conductance, Density, and Viscosity Data. Washington, USA: U.S. Government Printing Office; 1968. 139 p.

Minchenko VI, Stepanov VP. Ionnyye rasplavy: uprugiye i kaloricheskiye svoystva [Ionic melts: elastic and caloric properties]. Ekaterinburg: IHTE UB RAS; 2008. 367 p. Russian

Roberts RB, White GK, Thermal expansion of fluorites at high temperatures, J. Physics C: Solid State Physics, 19 (1986) 7167–7172. https://doi.org/10.1088/0022-3719/19/36/008

Rodnyi PA, Electron-hole and exciton processes in CaF2, SrF2, and BaF2 crystals (Review), Physics of the Solid State, 66 (2024) 155–171. https://doi.org/10.61011/PSS.2024.02.57911.215

Ekimova I, Minakova T, Ogneva T, Phisicochemistry of Alkaline-Earth Metals Oxides, Surface Advanced Materials in Technology and Construction, AIP Conf. Proc., 1698 (2016) 060014. http://dx.doi.org/10.1063/1.4937869

Ghalsasi P, Ghalsasi PS, Single crystal X-Ray structure of BeF2: alpha-quartz, Inorg. Chem, 50(1) (2011) 86–89. https://doi.org/10.1021/ic101248g

Wright AF, Fitch AF, Wright AC, The preparation and structure of the (alpha- and beta-quartz polymorphs of beryllium fluoride, J. Solid State Chem., 73(2) (1988) 298–304. https://doi.org/10.1016/0022-4596(88)90113-2

Gan CK, Al-Sharif AI, Al-Shormanb A, Qteish AA, First-principles investigation of the linear thermal expansion of BeF2: giant thermal expansion, RSC Adv., 12 (2022) 26588–26595. https://doi.org/10.1039/d2ra04860d

Takeda O, Yanagase K, Anbo Y, Aono M, et al., Density measurement of molten alkaline-earth fluorides using archimedean dual-sinker method, Int. J. Thermophys., 36 (2015) 2674–2686. https://doi.org/10.1007/s10765-015-1994-0

Kirshenbaum AD, Cahill JA, Stokes CS, The density of molten fluorides in the range of 1600–2500 K, J. Inorg. Nucl. Chem., 15(3–4) (1960) 297–304. https://doi.org/10.1016/0022-1902(60)80057-7

Krylosov AV, Polovov IB, Rebrin OI, Density and electrical conductivity of molten beryllium fluoride–alkali-metal chloride salt mixtures, Russian Metallurgy (Metally), 2 (2023) 229–234. https://doi.org/0.1134/S003602952302012X

Gadzhiev SM, Shabanov OM, Magomedova AO, Dzhamalova SA, Limiting electroconductivity and structure of molten chlorides of alkaline-earth metals, Russian J. Electrochem., 39 (2003) 1083–1088. https://doi.org/10.1023/A:1026171420132

Kim Y, Kang J, Viscosity of molten MgF2-LiF-MgO system and structure investigation using classical molecular dynamics simulations, J. Non-Crystalline Solids, 552 (2021) 120377. https://doi.org/10.1016/j.jnoncrysol.2020.120377

Li Z, Wu F, Theoretical insight into the structure of molten LiF, BF2, YF3 and ThF4, J. Radioanalytical and Nuclear Chem., 332 (2023) 1163–1170. https://doi.org/10.1007/s10967-023-08780-0

Janz GJ. Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, Volume 17. Washington, USA: American Chemical Society and the American Institute of Physics; 1988. 309 p.

Roy S, Brehm M, Sharma S, Wu F, et al., Unraveling local structure of molten salts via X-ray scattering, raman spectroscopy, and Ab Initio molecular dynamics, J. Phys. Chem., 125B (2021) 5971–5982. https://doi.org/10.1021/acs.jpcb.1c03786

Bu M, Liang W, Lu G, Yu J, Static and dynamic ionic structure of molten CaCl2 via first-principles molecular dynamics simulations, Ionics, 27 (2021) 771–779. https://doi.org/10.1007/s11581-020-03852-7

Pavlatou EA, Papatheodorou GN, Raman spectroscopic study of in the crystalline, glassy and BeCl2 liquid states and of molten mixtures BeCl2–CsCl, Phys. Chem. Chem. Phys., 2 (2000) 1035–1043. https://doi.org/10.1039/A909120C




DOI: https://doi.org/10.15826/elmattech.2025.4.049

Copyright (c) 2025 Olga Yu. Tkacheva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.